Pagini recente » Cod sursa (job #1428194) | Cod sursa (job #2047559) | Cod sursa (job #1631701) | Cod sursa (job #381704) | Cod sursa (job #2243241)
#include <fstream>
#include <math.h>
#include <iostream>
std::ifstream f("ssnd.in");
std::ofstream g("ssnd.out");
using namespace std;
constexpr int MAXN = 1000001;
//(a - b) mod p = ((a mod p - b mod p) + p) mod p
//(a / b) mod p = ((a mod p) * (b^(-1) mod p)) mod p
//Where b^(-1) mod p is the modular inverse of b mod p. For p = prime, b^(-1) mod p = b^(p - 2) mod p
void findPrimes(int primes[], int &K)
{
bool filter[MAXN];
for(int i=0; i<MAXN; ++i)
{
filter[i] = true;
}
K = 0;
for(int i=2; i<MAXN; ++i)
{
if(filter[i])
{
primes[K] = i;
++K;
for(int j=i+i; j<MAXN; j+=i)
{
filter[j] = false;
}
}
}
}
int power(int x, int p, int MOD) {
int rez = 1;
x %= MOD;
for(; p; p >>= 1) {
if(p & 1) {
rez *= x;
rez %= MOD;
}
x *= x;
x %= MOD;
}
return rez;
}
/*
int power(int n, int p, int mod)
{
int r = 1;
while( p != 1 )
{
if( p % 2 ==1 )
r = (n*r) % mod;
n = (n*n) % mod;
p = p / 2;
}
return ( n * r ) % mod;
}*/
void computeValues(int &nr, int &sum, int nr_d, int prime)
{
int mi = power(prime-1, 9971, 9973); ///For p = prime, b^(-1) mod p = b^(p - 2) mod p
int prime_pow = power(prime, nr_d + 1, 9973) - 1;
sum = (1LL * sum * prime_pow * mi) % 9973;
nr *= nr_d + 1;
}
int primes[100000];
int main()
{
int t=0;
long long x=0;
int sum = 0;
int nr = 0;
int K;
findPrimes(primes, K);
f>>t;
while(t > 0)
{
f >> x;
sum = 1;
nr = 1;
for(int i = 0; i < K; ++i)
{
auto nr_d = 0;
while( x % primes[i] == 0 )
{
++ nr_d;
x /= primes[i];
}
if(nr_d > 0)
{
computeValues(nr, sum, nr_d, primes[i]);
}
}
if(x > 1)
{
++nr;
computeValues(nr, sum, 1, x);
}
g << nr << ' ' << sum <<'\n';
--t;
}
}