Pagini recente » Cod sursa (job #365009) | Cod sursa (job #2461) | Cod sursa (job #1549558) | Cod sursa (job #1592631) | Cod sursa (job #2147567)
#include <fstream>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
ifstream fin("ubuntzei.in");
ofstream fout("ubuntzei.out");
struct Pair {
int dist, nod;
bool operator < (const Pair& p) const
{
return dist > p.dist;
}
};
using VI = vector<int>;
using VVI = vector<VI>;
using PII = pair<int, int>;
const int Inf = 0x3f3f3f3f;
VI C, d; // d - Dijkstra din nodul sursa, C - orasele speciale
VVI D, dp; // D[i] - dist minima de la C[i] la restul nodurilor
// dp[i][j] - dist minima a unui drum care porneste din 1 si se termina cu j,
// daca drumul contine o submultime i de noduri din cele speciale, si j e inclus in i
int n, m, K;
vector<vector<PII>> G;
void Read();
void Dijkstra(int S, VI& d);
int main()
{
Read();
Dijkstra(1, d);
if (K == 0)
{
fout << d[n] << '\n';
fout.close();
return 0;
}
for (int i = 0; i < K; ++i)
Dijkstra(C[i], D[i]);
// initializare
for (int j = 0; j < K; ++j)
dp[1 << j][j] = d[C[j]]; // dp[1 << j][j] - dist minima de la 1 la C[j], daca trec obligatoriu numai prin nodul C[j]
// dinamica
for (int i = 1; i < (1 << K); ++i) // pt fiecare submultime i de pozitii din sirul nodurilor {C[0], ..., C[K - 1] }
for (int j = 0; j < K; ++j)
if (i & (1 << j)) // masca i contine bitul j
for (int k = 0; k < K; ++k)
if ( !(i & (1 << k)) ) // si masca i NU contine bitul k
dp[i | (1 << k)][k] = min(dp[i | (1 << k)][k], dp[i][j] + D[j][C[k]]);
int res(Inf);
for (int i = 0; i < K; ++i)
res = min(res, dp[(1 << K) - 1][i] + D[i][n]);
fout << res << '\n';
fout.close();
}
void Dijkstra(int S, VI& d)
{
priority_queue<Pair> Q;
d = VI(n + 1, Inf);
d[S] = 0; Q.push({0, S});
for (int x, dx, y, w; !Q.empty(); Q.pop())
{
x = Q.top().nod; dx = Q.top().dist;
if ( d[x] < dx )
continue;
for (const auto& e : G[x])
{
y = e.first; w = e.second;
if ( d[y] > d[x] + w )
{
d[y] = d[x] + w;
Q.push({d[y], y});
}
}
}
}
void Read()
{
fin >> n >> m >> K;
G = vector<vector<PII>>(n + 1);
C = VI(K); D = VVI(K);
dp = VVI(1 << K, VI(K, Inf));
for (int i = 0; i < K; ++i)
fin >> C[i];
for (int i = 1, x, y, w; i <= m; ++i)
{
fin >> x >> y >> w;
G[x].push_back({y, w});
G[y].push_back({x, w});
}
fin.close();
}