#include <bits/stdc++.h>
using namespace std;
ifstream in("pixels.in");
ofstream out("pixels.out");
const int DIM = 100;
// unverified
template <class type>
class MaxFlow {
private:
static constexpr type INF = numeric_limits<type> :: max() / 2;
static constexpr long double EPS = 1e-6;
static inline int cmp(const type x) {
if (fabs(x) < EPS)
return 0;
return x < 0 ? -1 : 1;
}
struct edge {
int x, y; type flo, cap;
edge(int _x, int _y, type _cap) :
x(_x), y(_y), cap(_cap), flo(0) {};
};
vector<edge> lst; vector<type> dis;
vector<vector<int>> edg; vector<bool> oki;
void bfs(const int src, const int dst) {
dis.assign(edg.size(), (type)INF); dis[src] = 0;
for (deque<int> que(1, src); que.size(); que.pop_front()) {
int x = que.front();
if (x == dst) continue;
for (int it : edg[x]) {
int y = lst[it].y;
if (!cmp(lst[it].cap - lst[it].flo))
continue;
if (dis[y] > dis[x] + 1) {
dis[y] = dis[x] + 1;
que.push_back(y);
}
}
}
}
type dfs(const int x, const int dst, type cap) {
if (!cmp(cap)) return 0;
if (x == dst) return cap;
type flo = 0;
for (int it : edg[x]) {
int y = lst[it].y;
if (!cmp(cap - flo))
break;
if (!cmp(lst[it].cap - lst[it].flo) or cmp(dis[y] - dis[x] - 1))
continue;
type aux = dfs(y, dst, min(cap - flo, lst[it].cap - lst[it].flo));
if (cmp(aux) > 0) {
lst[it].flo += aux;
lst[it ^ 1].flo -= aux;
flo += aux;
}
}
return flo;
}
void fill(const int x, vector<int> &ans) {
oki[x] = true;
for (int it : edg[x]) {
int y = lst[it].y;
if (cmp(lst[it].cap - lst[it].flo) and !oki[y])
fill(y, ans);
}
}
public:
MaxFlow(int sz) {
edg.resize(sz);
}
void addUndirectedEdge(const int x, const int y, const type c) {
edg[x].push_back((int) lst.size()); lst.push_back(edge(x, y, c));
edg[y].push_back((int) lst.size()); lst.push_back(edge(y, x, c));
}
void addDirectedEdge(const int x, const int y, const type c) {
edg[x].push_back((int) lst.size()); lst.push_back(edge(x, y, c));
edg[y].push_back((int) lst.size()); lst.push_back(edge(y, x, 0));
}
type getMaxFlow(const int src, const int dst) {
for (int i = 0; i < lst.size(); ++i)
lst[i].flo = 0;
type aux, ans = 0;
do {
bfs(src, dst);
aux = dfs(src, dst, INF); ans += aux;
} while (cmp(aux));
return ans;
}
type getMinCut(const int src, const int dst, vector<int> &ans) {
oki.assign(edg.size(), false);
type sol = getMaxFlow(src, dst);
fill(src, ans); ans.clear();
for (int i = 0; i < edg.size(); ++i)
if (oki[i]) ans.push_back(i);
return sol;
}
}; MaxFlow<int> myNetwork(DIM * DIM + 2);
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, 1, 0, -1};
int mat1[DIM][DIM], mat2[DIM][DIM];
inline int g(int x, int y, int n)
{
return x * n + y;
}
int main(void) {
int n;
in >> n;
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
in >> mat1[i][j];
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
in >> mat2[i][j];
int src = n * n, dst = n * n + 1, s = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
s += mat1[i][j] + mat2[i][j];
myNetwork.addDirectedEdge(src, g(i, j, n), mat1[i][j]);
myNetwork.addDirectedEdge(g(i, j, n), dst, mat2[i][j]);
for (int k = 0; k < 4; ++k) {
int c, ii = i + dx[k], jj = j + dy[k];
in >> c;
if (k >= 1 and k <= 2 and jj < n and jj < n)
myNetwork.addUndirectedEdge(g(i, j, n), g(ii, jj, n), c);
}
} }
out << s - myNetwork.getMaxFlow(src, dst) << endl;
return 0;
}