Pagini recente » Cod sursa (job #2142719) | Borderou de evaluare (job #478045) | Cod sursa (job #1196685) | Cod sursa (job #2875771) | Cod sursa (job #2124433)
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <string.h>
#define nmax 1001
using namespace std;
ifstream h("maxflow.in");
ofstream g("maxflow.out");
vector <int> v[nmax];
int t[nmax],c[nmax][nmax],f[nmax][nmax],n,m,fl;
int BF()///Functia returneaza 1 daca gaseste un drum de crestere de la 1 la n si 0 in caz contrar
{
int i,nod,vec;
queue <int> Q;
memset(t,0,sizeof(t));
t[1]=-1;
Q.push(1);
while(!Q.empty())
{
nod=Q.front();
Q.pop();
for(i=0; i<v[nod].size(); i++)
{
vec=v[nod][i];//Vecinul nodului nod
if(t[vec]||c[nod][vec]==f[nod][vec]) continue;
t[vec]=nod;
Q.push(vec);
if(vec==n) return 1;
}
}
return 0;
}
void Dinic()
{
int i,j,fc;
while(BF()) //Cat timp mai gaseste un drum de crestere
{
for(i=1; i<=n; i++)
{
if(!t[i] || c[i][n]==f[i][n]) continue; //Daca i nu e in BF sau (i,n) e saturat
fc=c[i][n]-f[i][n]; //fc=valoarea cu care urmeaza sa saturam drumul
for(j=i; j>1; j=t[j])
fc=min(fc,c[t[j]][j]-f[t[j]][j]);
if(!fc) continue;
///Saturez drumul in graful rezidual
f[i][n]+=fc;
f[n][i]-=fc;
for(j=i; j>1; j=t[j])
{
f[t[j]][j]+=fc;
f[j][t[j]]-=fc;
}
fl+=fc;
}
}
}
int main()
{
h>>n>>m;
int i,x,y,z;
for(i=1; i<=m; i++)
{
h>>x>>y>>z;
c[x][y]=z;
v[x].push_back(y);
v[y].push_back(x);
}
Dinic();
g<<fl;
return 0;
}