//#pragma GCC optimize("Ofast")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include <iostream>
#include <fstream>
#include <cassert>
#include <vector>
#include <functional>
using namespace std;
template <
typename CapType, typename TotalCapType,
typename CostType, typename TotalCostType
>
class CostScaling {
private:
static const int alpha = 8; // eps <- max(1, eps / alpha)
using cap_t = CapType;
using tcap_t = TotalCapType;
using cost_t = CostType; // > max{|C|} * (2 * |V|)
using tcost_t = TotalCostType;
static constexpr cost_t Inf = (tcap_t(1) << (sizeof(tcap_t) * 8 - 2)) - 1;
struct InputEdge { int from, to; cap_t b, c; cost_t cost; };
struct Edge { int to, rev; cap_t cap; cost_t cost; };
class Dinic {
public:
Dinic(int N, const vector<int>& ofs, vector<Edge>& edges,
vector<tcap_t>& capacity)
: N(N), ofs(ofs), edges(edges), capacity(capacity), last(N) {}
bool succeeded() {
// s -> u: capacity[u]
// u -> t: capacity[u + N]
tcap_t f = 0;
for (int u = 0; u < N; ++u) f += capacity[u];
vector<int> que(N);
while (f) {
dist.assign(N, -1);
int qh = 0, qt = 0, lv = N;
for (int u = 0; u < N; ++u) if (capacity[u] > 0) que[qt++] = u, dist[u] = 0;
for (; qh < qt; ) {
int u = que[qh++];
if (lv == N && capacity[u + N] > 0) lv = dist[u];
if (dist[u] > lv) break;
for (int ei = ofs[u]; ei < ofs[u + 1]; ++ei) {
int v = edges[ei].to;
if (edges[ei].cap > 0 && dist[v] == -1) {
que[qt++] = v, dist[v] = dist[u] + 1;
}
}
}
if (lv == N) break;
for (int u = 0; u < N; ++u) last[u] = ofs[u];
for (int u = 0; u < N; ++u) if (capacity[u] > 0) {
auto df = block_flow(u, capacity[u]);
f -= df, capacity[u] -= df;
}
}
return f == 0;
}
private:
tcap_t block_flow(int u, tcap_t f) {
tcap_t ret = 0;
if (capacity[u + N] > 0) {
tcap_t df = min(f, capacity[u + N]);
capacity[u + N] -= df;
return df;
}
for (auto& ei = last[u]; ei < ofs[u + 1]; ++ei) {
auto& e = edges[ei]; int v = e.to;
if (e.cap == 0 || dist[v] <= dist[u]) continue;
cap_t df = block_flow(v, min<cap_t>(e.cap, f));
if (df == 0) continue;
e.cap -= df, edges[e.rev].cap += df;
f -= df, ret += df;
if (f == 0) break;
}
return ret;
}
int N;
const vector<int>& ofs;
vector<Edge>& edges;
vector<tcap_t>& capacity;
vector<int> last, dist;
};
public:
CostScaling(int N, int M=0) : N(N), capacity(2 * N) {
if (M > 0) in.reserve(M);
}
void add_directed_edge(int u, int v, cap_t b, cap_t c, cost_t cost) {
if (b > 0) capacity[v] += b, capacity[u + N] += b;
else capacity[u] += -b, capacity[v + N] += -b;
in.push_back({u, v, b, c, cost});
}
pair<bool, tcost_t> minimum_cost_circulation() {
construct();
if (!has_feasible_circulation()) return {false, 0};
const int cost_multiplier = 2 << __lg(N); // should be > |V|
cost_t eps = 0;
for (auto& e : edges) e.cost *= cost_multiplier, eps = max(eps, e.cost);
while (eps > 1) refine(eps = max<cost_t>(1, eps / alpha));
tcost_t ret = initial_cost;
for (auto& e : edges) ret -= (e.cost / cost_multiplier) * e.cap;
return {true, ret / 2};
}
private:
void refine(const cost_t eps) {
auto cost_p = [&] (int u, const Edge& e) {
return e.cost + potential[u] - potential[e.to];
};
for (int u = 0; u < N; ++u) for (int i = ofs[u]; i < ofs[u + 1]; ++i) {
auto& e = edges[i];
if (cost_p(u, e) < 0) edges[e.rev].cap += e.cap, e.cap = 0;
}
vector<tcap_t> excess(initial_excess);
for (auto& e : edges) excess[e.to] -= e.cap;
vector<int> stack; stack.reserve(N);
for (int u = 0; u < N; ++u) if (excess[u] > 0) stack.push_back(u);
auto residue = [&] (const Edge& e) -> cap_t { return e.cap; };
auto push = [&] (int u, Edge& e, cap_t df) {
e.cap -= df; edges[e.rev].cap += df;
excess[e.to] += df; excess[u] -= df;
if (excess[e.to] > 0 && excess[e.to] <= df) {
stack.push_back(e.to);
}
};
auto relabel = [&] (int u, cost_t delta) {
potential[u] -= delta + eps;
};
auto relabel_in_advance = [&] (int u) {
if (excess[u] != 0) return false;
auto delta = Inf;
for (int ei = ofs[u]; ei < ofs[u + 1]; ++ei) {
auto& e = edges[ei];
if (residue(e) == 0) continue;
if (cost_p(u, e) < 0) return false;
else delta = min<tcost_t>(delta, cost_p(u, e));
}
relabel(u, delta);
return true;
};
auto discharge = [&] (int u) {
auto delta = Inf;
for (int ei = ofs[u]; ei < ofs[u + 1]; ++ei) {
auto& e = edges[ei];
if (residue(e) == 0) continue;
if (cost_p(u, e) < 0) {
if (relabel_in_advance(e.to)) {
--ei; continue; // modify ei (!)
}
cap_t df = min<tcap_t>(excess[u], residue(e));
push(u, e, df);
if (!excess[u]) return;
} else delta = min<tcost_t>(delta, cost_p(u, e));
}
relabel(u, delta);
stack.push_back(u);
};
while (!stack.empty()) {
auto u = stack.back(); stack.pop_back();
discharge(u);
}
}
void construct() {
ofs.assign(N + 1, 0);
edges.resize(2 * in.size());
initial_excess.assign(N, 0);
initial_cost = 0;
potential.assign(N, 0);
for (auto& e : in) ofs[e.from + 1]++, ofs[e.to + 1]++;
for (int i = 1; i <= N; ++i) ofs[i] += ofs[i - 1];
for (auto& e : in) {
initial_excess[e.to] += e.c;
initial_excess[e.from] += -e.b;
initial_cost += tcost_t(e.cost) * (e.c + e.b);
edges[ofs[e.from]++] = {e.to, ofs[e.to], e.c - e.b, e.cost};
edges[ofs[e.to]++] = {e.from, ofs[e.from] - 1, 0, -e.cost};
}
for (int i = N; i > 0; --i) ofs[i] = ofs[i - 1];
ofs[0] = 0;
}
bool has_feasible_circulation() {
return Dinic(N, ofs, edges, capacity).succeeded();
}
private:
int N;
vector<InputEdge> in;
vector<tcap_t> capacity;
vector<int> ofs;
vector<Edge> edges;
tcost_t initial_cost;
vector<tcap_t> initial_excess;
vector<tcost_t> potential;
};
// cap, total_cap, cost * (2 * |V|), total_cost
using MCC = CostScaling<int, int, int, int>;
int main() {
#ifdef INFOARENA
ifstream cin("fmcm.in");
ofstream cout("fmcm.out");
#endif
int n, m, s, d; cin >> n >> m >> s >> d; s -= 1; d -= 1;
auto max_flow_finder = MCC(n, m);
vector<tuple<int, int, int, int>> edges(m);
for (int i = 0; i < m; i += 1) {
int x, y, c, z; cin >> x >> y >> c >> z; x -= 1; y -= 1;
edges[i] = make_tuple(x, y, c, z);
max_flow_finder.add_directed_edge(x, y, 0, c, 0);
}
max_flow_finder.add_directed_edge(d, s, 0, (1 << 30), -1);
const int max_flow = -max_flow_finder.minimum_cost_circulation().second;
auto mcc = MCC(n, m);
for (int i = 0; i < m; i += 1) {
int x, y, c, z; tie(x, y, c, z) = edges[i];
mcc.add_directed_edge(x, y, 0, c, z);
}
mcc.add_directed_edge(d, s, max_flow, max_flow, 0);
cout << mcc.minimum_cost_circulation().second << endl;
}