Cod sursa(job #2037334)

Utilizator clau_rClaudia clau_r Data 12 octombrie 2017 00:20:50
Problema Algoritmul lui Dijkstra Scor 100
Compilator cpp Status done
Runda Arhiva educationala Marime 2.24 kb
#include <iostream>
#include <vector>
#include <list>
#include <queue>
#include <stdio.h>
#include <string.h>
#include <climits>
#include <set>

const int maxn = 50001;
const int inf = 1 << 30;

FILE *in = fopen("dijkstra.in","r"), *out = fopen("dijkstra.out","w");
using namespace std;

class Graph
{
public:
    std::list<std::pair<int, int> >* neigh;
    int n;
    
    Graph(int n) {
        neigh = new std::list<std::pair<int, int>> [n + 1];
        this->n = n + 1;
    }
    
    void addEdge(int u, int v, int w) {
        neigh[u].push_back(make_pair(v, w));
    }
    
    void shortestPath(int source) {
        
        set<pair<int, int>> pq;
        vector<int> distance(n, INT_MAX -1);
        vector<bool> visited(n, false);
        
        distance[source] = 0;
        visited[source] = true;
        pq.insert(make_pair(0, source));
        
        while(!pq.empty()) {
            auto node = pq.begin()->second;
            pq.erase(pq.begin());
            //std::cout << "NOde " <<node << " " << distance[node] << "\n";
            
            for (const auto& child : neigh[node]) {
                auto neighbour = child.first;
                auto weight = child.second;
                
                if (distance[neighbour] > distance[node] + weight) {
                    if (visited[neighbour] ) {
                        //std::cout << "Search " <<neighbour << " " << distance[neighbour] << " " << "\n";
                        pq.erase(pq.find({distance[neighbour], neighbour}));
                    }
                    distance[neighbour] = distance[node] + weight;
                    visited[neighbour] = true;
                    //std::cout << "Insert " <<neighbour << " " << distance[neighbour] << "\n";
                    pq.insert({distance[neighbour], neighbour});
                
                }
            }
        }
        
        for ( int i = 2; i < n; ++i)
            fprintf(out, "%d ", distance[i] == INT_MAX -1 ? 0 : distance[i]);
        fprintf(out, "\n");
    }
};

int main()
{
    int n, m;
    fscanf(in, "%d %d", &n, &m);
    Graph g(n);
    int x, y, z;
    for ( int i = 0; i < m; ++i )
    {
        fscanf(in, "%d %d %d", &x, &y, &z);
        g.addEdge(x, y, z);
    }
    
    g.shortestPath(1);
    
    return 0;
}