Pagini recente » Cod sursa (job #2470315) | Cod sursa (job #1272699) | Cod sursa (job #1548699) | Cod sursa (job #14539) | Cod sursa (job #1478141)
#include <bits/stdc++.h>
using namespace std;
const int MAX_VAL = 1000000;
const int MOD = 9973;
bitset<MAX_VAL+1> sieve;
vector<int> primes;
void generate_sieve()
{
for (int i = 4; i <= MAX_VAL; i += 2)
sieve[i] = true;
primes.push_back(2);
for (int i = 3; i <= MAX_VAL; i += 2)
if (sieve[i] == false)
{
primes.push_back(i);
for (int j = 3 * i; j <= MAX_VAL; j += 2 * i)
sieve[j] = true;
}
}
int modular_exponentiation(int a, int p, int n) /// a^p (mod n)
{
int solution = 1;
while (p)
{
if (p & 1)
solution = (1LL * solution * a) % n;
a = (1LL * a * a) % n;
p >>= 1;
}
return solution;
}
void euclid(int a, int b, int &x, int &y)
{
if (!b)
{
x = 1;
y = 0;
}
else
{
int x0, y0;
euclid(b, a % b, x0, y0);
x = y0;
y = x0 - (a / b) * y0;
}
}
int modularInverse(int A, int N)
{
int x, y;
euclid(A, N, x, y);
if (x <= 0)
x = N + x % N;
return x;
}
int add_mod(int a, int b)
{
a = (a + b) % MOD;
return a;
}
int substract(int a, int b)
{
a = (a - b + MOD) % MOD;
return a;
}
int multiply(int a, int b)
{
a = (1LL * a * b) % MOD;
return a;
}
int divide(int a, int b)
{
a = (1LL * a * modularInverse(b, MOD)) % MOD;
return a;
}
int numberOfDivisors(long long n)
{
int nr = 1;
for (size_t i = 0; 1LL * primes[i] * primes[i] <= n && i < primes.size(); ++i)
if (n % primes[i] == 0)
{
int e = 0;
while (n % primes[i] == 0)
{
e++;
n /= primes[i];
}
nr = multiply(nr, e + 1);
}
if (n > 1)
{
nr = multiply(nr, 2);
}
return nr;
}
int sumOfDivisors(long long n)
{
int sum = 1;
for (size_t i = 0; 1LL * primes[i] * primes[i] <= n && i < primes.size(); ++i)
if (n % primes[i] == 0)
{
int e = 0;
while (n % primes[i] == 0)
{
e++;
n /= primes[i];
}
sum = multiply(sum, substract(modular_exponentiation(primes[i], e + 1, MOD), 1));
sum = divide(sum, primes[i] - 1);
}
if (n > 1)
{
sum = multiply(sum, substract(modular_exponentiation(n, 2, MOD), 1));
sum = divide(sum, n - 1);
}
return sum;
}
int main()
{
ifstream in("ssnd.in");
ofstream out("ssnd.out");
generate_sieve();
int T;
long long n;
in >> T;
while (T--)
{
in >> n;
out << numberOfDivisors(n) << " " << sumOfDivisors(n) << "\n";
}
return 0;
}