Pagini recente » Cod sursa (job #3143196) | Cod sursa (job #667733) | Cod sursa (job #1289841) | Cod sursa (job #3204578) | Cod sursa (job #1439718)
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
const int NMAX = 610, INF = 0x3f3f3f3f;
int N, M, E, X, Y, C;
int Cap[NMAX][NMAX], Flow[NMAX][NMAX], Cost[NMAX][NMAX], Index[NMAX][NMAX], Dist[NMAX], Father[NMAX], Source, Sink;
vector<int> G[NMAX];
bool InQueue[NMAX];
bool BF()
{
for(int i = Source; i <= Sink; ++ i)
Dist[i] = INF, InQueue[i] = 0;
queue<int> Q;
Q.push(Source);
Dist[Source] = 0;
while(!Q.empty())
{
int Node = Q.front();
Q.pop();
InQueue[Node] = 0;
for(vector<int> :: iterator it = G[Node].begin(); it != G[Node].end(); ++ it)
if(Cap[Node][*it] > Flow[Node][*it] && Dist[*it] > Dist[Node] + Cost[Node][*it])
{
Dist[*it] = Dist[Node] + Cost[Node][*it];
Father[*it] = Node;
if(!InQueue[*it])
InQueue[*it] = 1, Q.push(*it);
}
}
return Dist[Sink] != INF;
}
void CMCM()
{
int NrMatching = 0, TotalCost = 0, MinFlow;
while(BF())
{
MinFlow = INF;
for(int Node = Sink; Node != Source; Node = Father[Node])
MinFlow = min(MinFlow, Cap[Father[Node]][Node] - Flow[Father[Node]][Node]);
for(int Node = Sink; Node != Source; Node = Father[Node])
{
Flow[Father[Node]][Node] += MinFlow;
Flow[Node][Father[Node]] -= MinFlow;
}
TotalCost += MinFlow * Dist[Sink];
}
for(int i = 1; i <= N; ++ i)
for(int j = N + 1; j <= N + M; ++ j)
if(Flow[i][j])
NrMatching ++;
printf("%i %i\n", NrMatching, TotalCost);
for(int i = 1; i <= N; ++ i)
for(int j = N + 1; j <= N + M; ++ j)
if(Flow[i][j])
printf("%i ", Index[i][j]);
}
int main()
{
freopen("cmcm.in", "r", stdin);
freopen("cmcm.out", "w", stdout);
scanf("%i %i %i", &N, &M, &E);
Source = 0; Sink = N + M + 1;
for(int i = 1; i <= E; ++ i)
{
scanf("%i %i %i", &X, &Y, &C);
Y += N;
G[X].push_back(Y);
G[Y].push_back(X);
Cap[X][Y] = 1;
Index[X][Y] = i;
Cost[X][Y] = C;
Cost[Y][X] = -C;
}
for(int i = 1; i <= N; ++ i)
{
Cap[Source][i] = 1;
G[Source].push_back(i);
G[i].push_back(Source);
}
for(int i = N + 1; i <= N + M; ++ i)
{
Cap[i][Sink] = 1;
G[i].push_back(Sink);
G[Sink].push_back(i);
}
CMCM();
}