Pagini recente » Cod sursa (job #2964258) | Cod sursa (job #771554) | Cod sursa (job #2198429) | Cod sursa (job #971376) | Cod sursa (job #1437128)
/*
* e_032_max_flow_ford_fulkerson.cpp
*
* Created on: May 16, 2015
* Author: Marius
*/
#include <iostream>
using namespace std;
#include <fstream>
#include <queue>
#include <list>
#include <vector>
#include <string>
#include <algorithm>
namespace e_032_max_flow_ford_fulkerson_nms
{
struct Edge
{
int u, v; // edge u to v
int c; // the capacity
int dir; // direction: forward (1) or backward (-1) edge
Edge* re; // pointer to the reverse edge in the graph
};
int find_max_flow_ford_fulkerson(int N, vector<vector<Edge*>>& adj_list)
{
int max_flow = 0;
list<int> Q;
vector<char> touched_queue;
vector<Edge*> parent_edges;
touched_queue.resize(N + 1);
parent_edges.resize(N + 1);
bool has_s2t_path = true;
while (has_s2t_path)
{
//no node on the path at the beginning
Q.clear();
std::fill(touched_queue.begin(), touched_queue.end(), 0);
for (auto& ep : parent_edges)
ep = 0;
//find a path from source to sink in the residual graph
//only edges with positive capacities should be included in the path
Q.push_back(1);
touched_queue[1] = 1;
bool found_destination = false;
while (!Q.empty() && !found_destination)
{
int u = Q.front();
Q.pop_front();
for (auto& e : adj_list[u])
{
int v = e->v;
//not already in queue and an edge with positive capacity
if (!touched_queue[v] && e->c > 0)
{
//put the node in the list
Q.push_back(v);
touched_queue[v] = 1;
parent_edges[v] = e;
//check if we have reached the final node
if (v == N)
{
found_destination = true;
break;
}
}
}
}
if (found_destination)
{
// we have a path from source to sink
// update the residual graph
//
// parse the path we have found from sink to source, via parent edges
// and find the minimum capacity
int min_capacity = parent_edges[N]->c + 1;
int node = N;
while (node != 1)
{
Edge* e = parent_edges[node];
min_capacity = min(min_capacity, e->c);
node = e->u;
}
//increment the flow value
max_flow += min_capacity;
//update the capacity of edges in the residual graph
node = N;
while (node != 1)
{
Edge* e = parent_edges[node];
e->c -= min_capacity;
//also update the reverse edge
e->re->c += min_capacity;
node = e->u;
}
}
else
has_s2t_path = false; //no more paths from s to t
}
return max_flow;
}
}
// int e_032_max_flow_ford_fulkerson()
int main()
{
using namespace e_032_max_flow_ford_fulkerson_nms;
string in_file = "maxflow.in";
string out_file = "maxflow.out";
int N, M;
vector<vector<Edge*>> adj_list;
ifstream ifs(in_file.c_str());
if (!ifs.is_open())
{
cout << "Input file not found" << endl;
return -1; // no input file
}
ifs >> N >> M;
adj_list.resize(N + 1);
for (int m = 1; m <= M; m++)
{
//create the forward and it's backward edge
Edge* e = new Edge;
Edge* re = new Edge;
ifs >> e->u >> e->v >> e->c;
e->dir = 1;
e->re = re;
re->u = e->v;
re->v = e->u;
re->c = 0;
re->dir = -1;
re->re = e;
adj_list[e->u].push_back(e);
adj_list[e->v].push_back(re);
}
ifs.close();
int max_flow = find_max_flow_ford_fulkerson(N, adj_list);
ofstream ofs(out_file.c_str());
ofs << max_flow;
ofs.close();
//release the memory
for (int u = 1; u <= N; u++)
for (vector<Edge*>::iterator it = adj_list[u].begin(); it != adj_list[u].end(); it++)
delete *it;
return 0;
}