Pagini recente » Cod sursa (job #2947660) | Cod sursa (job #2115274) | Cod sursa (job #665727) | Cod sursa (job #945551) | Cod sursa (job #1405339)
#include <fstream>
#include <algorithm>
#include <cmath>
#include <iomanip>
using namespace std;
ifstream fin("rubarba.in");
ofstream fout("rubarba.out");
const double eps = 1e-2;
int N, top;
double sol, l1, l2, arie;
struct puncte
{
int x, y;
};
puncte V[100005], ST[100005];
int cross_product(puncte A, puncte B, puncte C)
{
return (B.y - A.y) * (C.x - A.x) - (C.y - A.y) * (B.x - A.x);
}
bool cmp(puncte p1, puncte p2)
{
return cross_product(V[1], p1, p2) < 0;
}
void sort_points()
{
int pos = 1;
for (int i = 1; i <= N; ++i)
if (V[i].x < V[pos].x || (V[i].x == V[pos].x && V[i].y < V[pos].y))
pos = i;
swap(V[1], V[pos]);
sort(V + 2, V + N + 1, cmp);
}
void convex_hull()
{
sort_points();
ST[1] = V[1];
ST[2] = V[2];
top = 2;
for (int i = 3; i <= N; ++i)
{
while (top >= 2 && cross_product(ST[top - 1], ST[top], V[i]) > 0)
--top;
ST[++top] = V[i];
}
}
int paralele (puncte A, puncte B, puncte C, puncte D)
{
int a1 = B.y - A.y;
int b1 = A.x - B.x;
int a2 = D.y - C.y;
int b2 = C.x - D.x;
return (a1 * b2 == a2 * b1);
}
int perpendicularD1(puncte A, puncte B, puncte D)
{
int a1 = B.y - A.y;
int b1 = A.x - B.x;
int a2 = A.y - D.y;
int b2 = D.x - A.x;
return (a1 * a2 == -(b1 * b2));
}
int perpendicularD2(puncte A, puncte B, puncte C)
{
int a1 = B.y - A.y;
int b1 = A.x - B.x;
int a2 = C.y - B.y;
int b2 = B.x - C.x;
return (a1 * a2 == -(b1 * b2));
}
void solve()
{
sol = -1.0;
puncte A, B, C, D;
ST[++top] = V[1];
for (int i = 1; i <= top; ++i)
{
A = V[i];
B = V[i + 1];
for (int j = i + 2; j < top; ++j)
{
C = V[j];
D = V[j + 1];
if (paralele(A, B, C, D))
{
if (perpendicularD1(A, B, D) && perpendicularD2(A, B, C))
{
l1 = sqrt(double(B.y - A.y) * double(B.y - A.y) + double(B.x - A.x) * double(B.x - A.x));
l2 = sqrt(double(C.y - B.y) * double(C.y - B.y) + double(C.x - B.x) * double(C.x - B.x));
arie = l1 * l2;
if (sol == -1.0)
sol = arie;
sol = min(sol, arie);
}
}
}
}
}
int main()
{
fin >> N;
for (int i = 1; i <= N; ++i)
fin >> V[i].x >> V[i].y;
convex_hull();
solve();
fout << fixed << setprecision(2) << sol << '\n';
fin.close();
fout.close();
return 0;
}