Cod sursa(job #1290597)

Utilizator mirceadinoMircea Popoveniuc mirceadino Data 11 decembrie 2014 15:34:46
Problema Parantezare optima de matrici Scor 100
Compilator cpp Status done
Runda Arhiva educationala Marime 1.9 kb
#include<algorithm>
#include<bitset>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<deque>
#include<fstream>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<vector>

using namespace std;

#define dbg(x) (cout<<#x<<" = "<<(x)<<'\n')
#ifdef HOME
const string inputFile = "input.txt";
const string outputFile = "output.txt";
#else
const string problemName = "podm";
const string inputFile = problemName + ".in";
const string outputFile = problemName + ".out";
#endif // HOME

typedef long long int lld;
typedef pair<int, int> PII;
typedef pair<int, lld> PIL;
typedef pair<lld, int> PLI;
typedef pair<lld, lld> PLL;

const int INF = (1LL << 30) - 1;
const lld LINF = (1LL << 60) - 1;
const int dx[] = {1, 0, -1, 0, 1, -1, 1, -1};
const int dy[] = {0, 1, 0, -1, 1, -1, -1, 1};
const int MOD = 666013;

const int NMAX = 500 + 5;
const int MMAX = 100000 + 5;
const int KMAX = 100000 + 5;
const int PMAX = 100000 + 5;
const int LMAX = 100000 + 5;
const int VMAX = 100000 + 5;

int N;
lld A[NMAX];
lld DP[NMAX][NMAX];

int main() {
    int i, j, k, d;

#ifndef ONLINE_JUDGE
    freopen(inputFile.c_str(), "r", stdin);
    freopen(outputFile.c_str(), "w", stdout);
#endif

    scanf("%d", &N);

    for(i = 0; i <= N; i++)
        scanf("%lld", &A[i]);

    for(i = 1; i <= N; i++)
        DP[i][i] = 0;

    for(i = 1; i <= N - 1; i++)
        DP[i][i + 1] = A[i - 1] * A[i] * A[i + 1];

    for(d = 2; d <= N - 1; d++)
        for(i = 1; i + d <= N; i++) {
            j = i + d;
            DP[i][j] = LINF;
            for(k = i; k <= j; k++)
                DP[i][j] = min(DP[i][j], DP[i][k] + DP[k + 1][j] + A[i - 1] * A[k] * A[j]);
        }

    printf("%lld\n", DP[1][N]);

    return 0;
}