Pagini recente » Cod sursa (job #2457310) | Cod sursa (job #2697047) | Cod sursa (job #1378754) | Cod sursa (job #1891485) | Cod sursa (job #1141685)
#include <algorithm>
#include <fstream>
#include <iostream>
#include <vector>
using namespace std;
ifstream in("iepuri.in");
ofstream out("iepuri.out");
namespace {
const int BUFFER_LIMIT = 100000;
int char_counter = BUFFER_LIMIT - 1;
char buffer[BUFFER_LIMIT];
inline void check_buffer() {
(++char_counter == BUFFER_LIMIT) ? (in.read(buffer, BUFFER_LIMIT), char_counter = 0) : (1);
}
void parse_integer(int &x){
bool sign = 0;
while (!((buffer[char_counter] >= '0' && buffer[char_counter] <= '9') || (buffer[char_counter] == '-' ))) check_buffer();
if (buffer[char_counter] == '-') {
check_buffer();
sign = 1;
}
for (x = 0; (buffer[char_counter] >= '0' && buffer[char_counter] <= '9'); x *= 10, x += (buffer[char_counter] - '0'), check_buffer());
if (sign) {
x = -x;
}
}
}
const int MOD = 666013;
struct Matrix {
int M[3][3];
Matrix() {
for (int i = 0; i < 3; i += 1) {
for (int j = 0; j < 3; j += 1) {
M[i][j] = 0;
}
}
}
};
Matrix log_pow(Matrix &base, int exponent);
Matrix operator*(const Matrix &A, const Matrix &B);
int mod(long long x, int mod);
void print_matrix(const Matrix &M);
int main() {
int t;
check_buffer();
parse_integer(t);
int x, y, z, a, b, c, n;
for (int i = 1; i <= t; ++i) {
// fin >> x >> y >> z >> a >> b >> c >> n;
parse_integer(x);
parse_integer(y);
parse_integer(z);
parse_integer(a);
parse_integer(b);
parse_integer(c);
parse_integer(n);
Matrix M;
M.M[0][1] = M.M[1][2] = 1;
M.M[2][0] = c;
M.M[2][1] = b;
M.M[2][2] = a;
M = log_pow(M, n - 3);
out << mod(1LL * x * M.M[2][0] + 1LL * y * M.M[2][1] + 1LL * z * M.M[2][2], MOD) << '\n';
}
return 0;
}
Matrix log_pow(Matrix &base, int P) {
Matrix result = base;
for (int p = 1; p <= P; p *= 2) {
if (p & P)
result = result * base;
base = base * base;
}
return result;
}
Matrix operator*(const Matrix &A, const Matrix &B) {
Matrix result;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
result.M[i][j] += mod((1LL * A.M[i][k] * B.M[k][j]), MOD);
}
}
}
return result;
}
inline int mod(long long x, int m) {
if (x < m) return x;
if (x < 2 * m) return x - m;
return x % m;
}