Cod sursa(job #1141047)

Utilizator CosminRusuCosmin Rusu CosminRusu Data 12 martie 2014 15:48:24
Problema Cuplaj maxim de cost minim Scor 0
Compilator cpp Status done
Runda Arhiva educationala Marime 3.31 kb
#include <fstream>
#include <iostream>
#include <vector>
#include <bitset>
#include <string.h>
#include <algorithm>
#include <iomanip>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <set>
#include <map>
#include <string>
#include <queue>
#include <deque>

using namespace std;

const char infile[] = "cmcm.in";
const char outfile[] = "cmcm.out";

ifstream fin(infile);
ofstream fout(outfile);

const int MAXN = 305;
const int oo = 0x3f3f3f3f;

typedef vector<int> Graph[2*MAXN];
typedef vector<int> :: iterator It;

const inline int min(const int &a, const int &b) { if( a > b ) return b;   return a; }
const inline int max(const int &a, const int &b) { if( a < b ) return b;   return a; }
const inline void Get_min(int &a, const int b)    { if( a > b ) a = b; }
const inline void Get_max(int &a, const int b)    { if( a < b ) a = b; }

int Capacity[2*MAXN][2*MAXN], Flow[2*MAXN][2*MAXN];
int Cost[2*MAXN][2*MAXN], Father[2*MAXN];
int dp[2*MAXN], Edge[MAXN][2*MAXN];
Graph G;
int Source, Sink, _match, _minCostFlow, N, M, E;
bitset <2*MAXN> inQ;
queue <int> Q;

inline bool BellmanFord() {
    memset(dp, oo, sizeof(dp));
    dp[Source] = 0;
    Q.push(Source);
    inQ[Source] = true;
    while(!Q.empty()) {
        int Node = Q.front();
        Q.pop();
        inQ[Node] = false;
        //if(Node == Sink)
        //    continue;
        for(It it = G[Node].begin(), fin = G[Node].end(); it != fin ; ++ it)
            if(Capacity[Node][*it] - Flow[Node][*it] > 0 && dp[*it] > dp[Node] + Cost[Node][*it]) {
                dp[*it] = dp[Node] + Cost[Node][*it];
                Father[*it] = Node;
                if(!inQ[*it]) {
                    Q.push(*it);
                    inQ[*it] = true;
                }
            }
    }
    return dp[Sink] != oo;
}

int main() {
    fin >> N >> M >> E;
    for(int i = 1 ; i <= E ; ++ i) {
        int x, y, z;
        fin >> x >> y >> z;
        y += N;
        Edge[x][y] = i;
        G[x].push_back(y);
        G[y].push_back(x);
        Capacity[x][y] = 1;
        Capacity[y][x] = 0;
        Cost[x][y] = z;
        //Cost[y][x] = -z;
    }
    Source = 0;
    Sink = N + M + 1;
    for(int i = 1 ; i <= N ; ++ i) {
        G[Source].push_back(i);
        G[i].push_back(Source);
        Capacity[Source][i] = 1;
        Capacity[i][Source] = 0;
        Cost[Source][i] = 0;
    }
    for(int i = 1 + N ; i <= N + M ; ++ i) {
        G[i].push_back(Sink);
        G[Sink].push_back(i);
        Capacity[i][Sink] = 1;
        Capacity[Sink][i]= 0;
        Cost[i][Sink] = 0;
        Cost[Sink][i] = 0;
    }
    while(BellmanFord()) {
        int bottleNeck = oo;
        for(int i = Sink ; i != Source ; i = Father[i])
            bottleNeck = min(bottleNeck, Capacity[Father[i]][i] - Flow[Father[i]][i]);
        for(int i = Sink ; i != Source ; i = Father[i]) {
            Flow[Father[i]][i] += bottleNeck;;
            Flow[i][Father[i]] -= bottleNeck;
        }
        _match += bottleNeck;
        _minCostFlow += dp[Sink];
    }
    fout << _match << ' ' << _minCostFlow << '\n';
    for(int i = 1 ; i <= N ; ++ i)
        for(int j = 1 + N ; j <= N + M ; ++ j)
            if(Flow[i][j])
                fout << Edge[i][j] << ' ';
    fin.close();
    fout.close();
    return 0;
}