Pagini recente » Cod sursa (job #1939351) | Cod sursa (job #548778) | Cod sursa (job #469133) | Cod sursa (job #2209590) | Cod sursa (job #1015167)
#include <cstdio>
#include <bitset>
using namespace std;
const int Nmax = 1000000;
const int MOD = 9973;
const long long LL = 1;
int N,nrp;
int is_prime[80000];
bitset<Nmax> used;
void precalc()
{
int i,j;
is_prime[nrp++]=2;
for(i = 1 ; 2*i+1 <= Nmax; ++i)
if(!used[(2*i+1)])
{
is_prime[nrp++]=2*i+1;
for(j = 1;(2*i+1)*(2*j+1) <= Nmax ; ++j)
used[(2*i+1)*(2*j+1)] = 1;
}
}
int lg_put(int x, int b)
{
if (b == 0) return 1;
if (b == 1) return x;
int x1=x,x2=1;
while(b != 1)
{
if(b&1)
x2 = (LL*x2 * x1)%MOD,--b;
else
x1 = (LL*x1 * x1)%MOD,b/=2;
}
return (x1*x2)%MOD;
}
void solve()
{
long long a,b;
int nrd = 1,times = 0,sd = 1,x,y;
scanf("%lld",&a);
b = a;
for(int i = 0; is_prime[i] *is_prime[i] <= a; ++i)
{
times = 0;
while(a % is_prime[i] == 0)
{
++times;
a/= is_prime[i];
}
if(times)
{
nrd = nrd * (times + 1);
x = (lg_put(is_prime[i],times + 1) - 1) % MOD ;
y = (lg_put(is_prime[i]-1, MOD-2)) % MOD ; // calc invers modular
sd = (LL*(( LL * sd * x )% MOD) * y) % MOD;
}
if(a == 1) break;
}
if(a > 1)
{
nrd *= 2;
sd = (LL*sd*(a + 1))%MOD;
}
printf("%d %d\n",nrd,sd);
}
void read()
{
long long a;
scanf("%d",&N);
while(N--)
solve();
}
int main()
{
freopen("ssnd.in","r",stdin);
freopen("ssnd.out","w",stdout);
precalc();
read();
return 0;
}