Pagini recente » Cod sursa (job #732097) | Cod sursa (job #1111519) | Cod sursa (job #32090) | Cod sursa (job #2989623) | Cod sursa (job #1007753)
#include <iostream>
#include <fstream>
#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <climits>
#include <vector>
#include <algorithm>
using namespace std;
ifstream in("sdo.in");
ofstream out("sdo.out");
const int N = 3000000;
int v[N];
/* Find sqrt in logarithmic time */
int sqrt(int x) {
int step, i;
for (step = 1; step < x; step <<= 1);
for (i = 0; step; step >>= 1) {
if ( (double)(i + step) * (double)(i + step) <= x)
i += step;
}
return i;
}
int solve(int *v, int k, int n) {
int sq = sqrt(n);
vector<int> bucket[sq+1];
for (int i = 0; i <= sq; ++i, bucket[i].reserve(sq/2));
/* First off we compute the minimum and the maximum element */
int min = 0, max = INT_MAX;
int bucket_range;
int index = 0;
while (index < k) {
if (min == max) {
return v[0];
}
bucket_range = (max - min) / sq;
for (int i = 0; i < n; ++ i) {
bucket[ (v[i] - min) / bucket_range ].push_back(v[i]);
}
for (int i = 0; i <= sq; ++i) {
int aux = (bucket[i].size()) ;
if (index + aux < k) {
index += aux;
} else {
n = bucket[i].size();
memcpy(v ,bucket[i].data(), n * sizeof(int));
min = min + i * bucket_range;
max = min + bucket_range -1;
break;
}
}
sq = sqrt(n);
for (int i = 0; i <=sq; ++i) {
bucket[i].clear();
bucket[i].reserve(sq);
}
}
return -1;
}
int main() {
int n, k;
in>>n>>k;
for (int i = 0; i < n; ++i) {
in>>v[i];
}
out<<solve(v, k, n)<< "\n";
return 0;
}