Pagini recente » Diferente pentru blog/meet-in-the-middle intre reviziile 57 si 123 | Diferente pentru blog/meet-in-the-middle intre reviziile 51 si 123 | Diferente pentru blog/meet-in-the-middle intre reviziile 123 si 79 | Diferente pentru blog/meet-in-the-middle intre reviziile 123 si 107 | Diferente pentru blog/meet-in-the-middle intre reviziile 83 si 84
Nu exista diferente intre titluri.
Diferente intre continut:
A slightly improved algorithm brute forces through all $n^3^$ three number combinations and efficiently checks if -(a + b + c) is in the original array using a hash table. This algorithm has $O(n^3^)$ complexity.
By now, you’ve probably started wondering how the meet in the middle technique could be applied here. The insight comes from rewriting $a + b + c + d = 0$ as $a + b = -(c + d)$.
By now, you’re probably wondering how the meet in the middle technique can be applied here. The critical insight comes from rewriting $a + b + c + d = 0$ as $a + b = -(c + d)$.
Now we store all $n^2^$ sums $a + b$ in a hash set $S$. Then iterate through all $n^2^$ combinations for c and d and check if $S$ contains -(c + d).
Here's how the code looks
Nu exista diferente intre securitate.
Topicul de forum nu a fost schimbat.