Mai intai trebuie sa te autentifici.
Diferente pentru blog/meet-in-the-middle intre reviziile #52 si #51
Nu exista diferente intre titluri.
Diferente intre continut:
bq. Given n a prime number and p, q two integer numbers between 0 and n-1 find k such that p^k^ = q modulo n. This problem can be solved using the baby step, giant step algorithm which uses the meet in the middle trick.
We can write k = $i([sqrt(n)]+1) +j$
We can write k = $i sqrt(n) + j$
Notice that $i <= sqrt(n)$ and $j <= sqrt(n)$. Now our equality looks like this $p^(i ([sqrt(n)] + 1) + j)^ = q modulo n$. We can divide by $p^j^$ and get $p^(i[sqrt(n)] + 1)^ = qp^-j^ modulo n$.