
page 1 of 3

CentralEuropeanOlympiad inInformatics

28 July – 4 August 2005 Sárospatak, Hungary
http://ceoi.inf.elte.hu

Electric Fence

Let m be the number of intersections of the fence with the road line.
One can show by induction onm that the total number of disjoint regions equalsm/2+ 1. Hence, it is enough to compute
the number of intersections and the number of regions located on the left side of the road.
Let u andv be two intersections such that going along the fence fromu to v, there is no other intersecting segment. Such part
of the fence is called section andu andv are the endpoints of this section.
If the fence segment that connects fence posti andimod n+1 intersects with the road line then the intersection represented
by post labeli.
Note that the sections on each side are nested. Assign nesting level number to each section, such that the level of each
outermost section is 1.
One can easily prove that the number of regions on the left side equals the number of the odd level sections on the left side.
It is clear, that ifp andq are two consecutive sections, thenp is on the left side andq is on the right side of the road, or
conversely.
First compute the leftmost intersection (that is closest to the road endpoint a), denote it byle f tmost. Starting at the fence
post le f tmost, visit the fence posts in increasing order ifle f tmostis on the right side of the road, otherwise in decreasing
order. A sectionp on the left side is odd level iff and only if its starting intersection is closer to the road endpointa that its
ending intersection.

2

a b

1

2

3
1

Figure 1:

j

a b a b

j

j1

a b

i

i1

a b

i1

i

j1

j

i1

i

j

j1

j1

i

i1

Figure 2: Situations when intersection of a segment(i, i1) and the road line is closer to the road endpoint anda, then the
intersection of a segment(j, j1) and the road line. This relation can be computed using only the operation Drift.

1

page 2 of 3

CentralEuropeanOlympiad inInformatics

28 July – 4 August 2005 Sárospatak, Hungary
http://ceoi.inf.elte.hu

Complexity:
Time: O(n)
Memory: O(n)
Implementation

Program fence;
uses lookup;
Const
MaxN=100000; {max # posts}

Type
PointType=record

left:boolean; {post is on the left side of the road}
cross:boolean; {segment (i,i+1) crosses the road line}

end;
Var
N:longint; {number of the posts}
P:Array[1..MaxN] of PointType;
i,i1:longint;
side:boolean;
ti,ti1:integer;
leftpart:longint;
leftmost:longint;
iend:longint;
d:integer;
m:longint;

Function OnLeft(i,j:longint):boolean;
{Returns true iff the intersection of the segment (i,i+1) is closer to the road
endpoint "a" than the intercetion of the segment (j,j+1)}
var
i1,j1:longint;

begin
if i=n then i1:=1 else i1:=i+1;
if j=n then j1:=1 else j1:=j+1;
OnLeft:=(P[i1].left and(Drift(i,i1,j)<=0)and(Drift(i,i1,j1)<=0)) or

(P[i].left and (Drift(i,i1,j)>=0)and(Drift(i,i1,j1)>=0)) or
(P[j1].left and(Drift(j,j1,i)>=0)and(Drift(j,j1,i1)>=0)) or
(P[j].left and (Drift(j,j1,i)<=0)and(Drift(j,j1,i1)<=0))

end {OnLeft};

Begin {Prog}
n:=GetN;
m:=0; {number of intersections with the road line}
leftmost:=0;{the leftmost intersecting segment}
for i:=1 to n do begin
if i=n then i1:=1 else i1:=i+1;
ti:=Drift(n+1,n+2,i);

2

page 3 of 3

CentralEuropeanOlympiad inInformatics

28 July – 4 August 2005 Sárospatak, Hungary
http://ceoi.inf.elte.hu

ti1:=Drift(n+1,n+2,i1);
if ti*ti1<0 then begin {segment (i,i1) intersects with the road line}

inc(m);
P[i].cross:=true;
P[i].left:=ti>0;
if leftmost=0 then

leftmost:=i
else begin

if OnLeft(i,leftmost) then
leftmost:=i;

end;
end else begin

P[i].cross:=false;
P[i].left:=ti>0;

end;
end {for i};

if m=0 then begin
if P[1].left then

Answer(1, 0)
else

Answer(0, 1)
end;

side:=true; {left side of the road}
i:=leftmost;
if P[leftmost].left then d:=-1 else d:=1;
leftpart:=0; {number of regions on the left side}

repeat
iend:=i;
repeat {get the next crossing segment}

iend:=iend+d;
if iend>n then iend:=1;
if iend<1 then iend:=n;

until P[iend].cross;

if side and OnLeft(i, iend) then {odd level fence section on the left side}
inc(leftpart);

i:=iend;
side:=not side;

until i=leftmost;

Answer(leftpart, m div 2 +1-leftpart)

End.

3

