28 SUMMARY OF THE CEOI 2002

SUMMARY OF THE CEOI 2002 27

Summary of the

9th

Central European

Olympiad

in Informatics

June 30th– July 6th, 2002, Košice, Slovakia

http://cs.science.upjs.sk/ceoi

Contents

	Preface
	2

	Computer Science at the Faculty of Science…
	3

	Regulations…
	4

	Organizers…
	8

	Participants…
	10

	Programme…
	12

	Tasks…
	13

	 Day 1: Bugs Integrated, Inc.
	14

	 Day 1: Conqueror's batalion
	20

	 Day 1: A decorative fence
	26

	 Day 2: A highway and the seven dwarfs
	30

	 Day 2: Royal guards
	34

	 Day 2: Birthday party
	37

	Sponsors…
	43

	Results…
	44

Preface

Dear readers, dear friends,

these are more or less the same words which we used to start the editorial of the first issue of the official news sheet of this year's Central European Olympiad in Informatics (CEOI 2002). Actually that greeting read “Dear readers, dear guests, dear friends” but by now everybody has gone home, there are no guests and we can only hope that you who are now reading this are also friends – if not personal friends of the contestants then at least of the idea of young people meeting to test their programming and problem solving skills and becoming friends in the process.

As we said a while ago, everybody has gone home. Nothing is left but bills to settle, computer classrooms to reconstruct... Well, that's not quite true: there are friends to write to and memories to cherish. In spite of everything we are glad to have participated in such an event and have made it a part of our “cleaning up” tasks to publish this summary volume to preserve and communicate some of the results – not only material ones like lists of contestants and awarded points but (we hope) something of the atmosphere as well.

So what will you find in the volume?

First, the talk delivered during the opening ceremony by Professor Peter Vojtáš, the head of the Institute of Computer Science of the Šafárik University, the principal organizer of CEOI 2002. His talk was is devoted to sources and aims of computer science and to the results obtained by the Institute. The regulations of CEOI contests are rarely published but might be of interest and were therefore included in the volume. The list of participating teams and their individual members together with the table of results make up the “official” part of the volume; a detailed programme of the whole event should help the readers get some of the feeling for the atmosphere. In addition, those interested in the actual problems and their solutions will find these in a concluding part of the volume.

Well, this seems like a good place to finish this introduction; thank you for reading as far as this and perhaps some of us will meet at the coming CEOI's: next year in Muenster, Germany, or the year after that in Poland, or...

G. Andrejková, S. Krajči, J. Vinař

Computer Science

at the Faculty of Science

of the P. J. Šafárik University

There are two sources from which computer science or informatics grew. One is in engineering at technical universities. The second is in mathematics (starting with Turing, Church, von Neumann). These two approaches are not contradictory, not in competition, they are rather complementary on their integration which brings about synergetic effects.

We have deep respect for the art of engineering which developed heuristics to make things work although there are no exact models available (the Eiffel Tower in Paris is an example of what we understand under the „art of engineering“, there are no computed models of statics of this tower and it still stands).

On the other side we sometimes reach the border when we need formal (exact, mathematical) models of information processes – like security proofs, complexity estimates, knowledge representation, proofs of termination, completeness and correctness of programs (e.g. every computed answer is correct and every correct answer is computable).

At our institute we organize two branches of master studies (20-30 students in each year) – one more oriented on programming closer to hardware and nets (here we deal mainly with security) and the second higher level programming (database, datamining and information retrieval).

We organize PhD studies (about 5 students) in the field of programming and information systems, mainly on theoretical complexity (prof. Geffert), problems from the field of artificial neural networks (assoc. prof. Andrejková) and from deductive databases and knowledge based systems handling uncertainty and vagueness (prof. Vojtáš).

Ours is a new institute at our Faculty of Science (independent only few months) and the faculty supports our growth and development. For a computer information scientist it is a nice place to live in one faculty with colleagues from biology, chemistry, physics and mathematics. We start interdisciplinary studies and cooperation. For instance in the field of quantum computing, in bioinformatics on genetics engineering, on use of computer graphics in pharmaceutical applications, on models of parallel computers based on chemical properties of enzymes.

Peter Vojtáš, the director of the Institute of Computer Science

 Regulations of the

Central European Olympiad

in Informatics

(version of 2002)

The Olympiad is organised by the Ministry of Education or another appropriate institution of one of the nine Central European countries.

According to the rules accepted by the initiators of the CEOI, teams of nine Central European country, i.e. Austria, Croatia, Czech Republic, Germany, Hungary, Poland, Romania, Slovak Republic and Slovenia, are invited as regular participants. Moreover, the host country may invite guest participants as well.

The International Committee (IC) of the CEOI consists of the nine team leaders, and a representative of the host country, who chairs the meetings of the IC. A host which is willing to organise a CEOI in a given year in their country, has to announce their intent at least one year before that CEOI (during the previous CEOI competition days).

Selection of the next host is made by the IC by a majority vote.

Revision of the Regulations of the CEOI is adopted by the IC by a 2/3 majority vote.

Enlarging or decreasing the set of CEOI countries can only be adopted by consensus.

Goals

The CEOI aims at motivating secondary school students of Central Europe to :

· get more interested in informatics and information technology in general,

· test and prove their competence in solving problems with the help of computers,

· exchange knowledge and experience with other students of similar interest and qualification,

· establish personal contacts with young people of the Central European region.

Additionally, the CEOI may :

· provide training for the students participating in the International Olympiad in Informatics (IOI),

· initiate discussion and co-operation in informatics education in the secondary schools of the Central European countries.

General Regulations

Each team is composed of up to four secondary school students, and a team leader and a deputy team leader. Only the costs of travel to and from the place of the competition should be paid by teams; all local expenses are covered by the organisers. Accompanying persons and observers are welcome, but they should pay for their stay. Interested people are advised to contact the local organisers.

The official language is English. Students may use their mother tongue. Programming problems will be formulated in English and then translated by the team leaders to the mother tongue of their team. Both versions will be given to the students. Team leaders must be able to speak and write in English, as well as the language of their team.

The computers will be IBM PCs compatibles with selected software packages. Only the computers and software with built-in help facilities provided by the organisers may be used in the competition. In particular, the use of printed materials will be forbidden. The programming languages of the contest are Pascal, C and C++; the precise versions of these languages will be updated each year. The compilers and programming environments for the above mentioned programming languages will be installed on the hard disk.

Team Composition

Students have to be in school during the year when the contest is held and at most 19 years old. The team leader will be a member of the General Assembly. Observers and persons accompanying a delegation have to pay a fee.

General Assembly

General Assembly is composed of the team leaders of the participating countries and the president nominated by the host country. General Assembly selects problems to be solved in the competition from a set of problems prepared and proposed by the Scientific Committee.

The selection procedure is the following:

1. The chairperson of the Scientific Committee distributes the proposals. Their number equals the number of problems to be solved by the contestants.

2. The GA members may either accept or, in case of a major ambiguity of formulation or other serious reasons, deny the proposals by voting. When and if a proposal is denied, another prepared proposal will be offered to the GA. For such cases, the Scientific Committee should prepare at least two extra proposals for each round. The text of the accepted proposals must not be changed by the GA, except for minor rephrasing that is needed to avoid smaller ambiguities.

3. The selected problems will be translated by the team leaders into the national languages of the teams.

Scientific Committee

The Scientific Committee (SC) consists of a chairperson and a number of experts (SC members) from the host country. It becomes active well before the beginning of the Olympiad and has the task of selecting and preparing problems proposals.

The task of the Scientific Committee is to test and evaluate the solutions of the contestants.

Problems, Competition

The competition consists of two rounds in two days. In both rounds the working time is five hours and the contestants will be given one to four problems to solve. The selected problems will be translated by the team leaders into the national languages of the teams.

Within the first hour the contestants may submit written questions (either in English or in their national language) to the Scientific Committee concerning the formulation and interpretation of the problems. Only questions that can be answered with 'Yes', 'No' or 'No comment' may be accepted. The answers will be produced by the members of the Scientific Committee and approved by the chairperson of the SC as soon as possible.

When the competition ends, each contestant should prepare his/her solution for the evaluation, according to regulations issued by the organisers.

No special hardware requirement or software packages (e.g. graphic packages) will be needed to solve the problems. The whole communication between the CEOI authorities and contestants will be in a written form.

Evaluation

When the working time is over, the solutions of each of the contestant will be checked by an evaluator, using previously unpublished test data. The evaluation is based on the test data and the responses of the programs only.

The evaluation procedure concludes with the meeting of the Scientific Committee, where the evaluation reports are discussed. Potential disagreements are dissolved by voting. Achieving a proper and balanced evaluation is the responsibility of the Scientific Committee. If a team leader does not accept the results of the evaluation, he/she may appeal to the General Assembly.

Finally, the president of SC or IC presents the anonymous results to the General Assembly to take final decisions.

Results and Prizes

The General Assembly will determine the minimum scores for the gold, silver and bronze medals. The proportion of these gold, silver and bronze medals should be approximately 1:2:3. About 50% of the contestants should receive medals. Each contestant will receive a certificate of participation. The medals, certificates and other prizes will be given to the contestants at the official closing ceremony.

Organizers of the CEOI 2002

· Ministry of Education of Slovak Republic

· Faculty of Science, Šafárik University, Košice

· Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava

· Slovak Society for Computer Science

· European Research Consortium for Informatics and Mathematics

· Slovak Committee of Mathematical Olympiad

Contact

· email: ceoi@cs.science.upjs.sk

· phone: ++421 (55) 6221128, ++421 (55) 6221129

· fax: ++421 (55) 6222124

· address: Jesenná 5, 041 54 Košice, Slovakia

Steering committee

· Doc. RNDr. Gabriela Andrejková, CSc.

· Prof. RNDr. Vojtech Bálint, CSc.

· RNDr. Andrej Blaho

· Prof. RNDr. Alexander Feher, DrSc.

· Prof. RNDr. Viliam Geffert, DrSc.

· Doc. RNDr. Igor Prívara, CSc.

· Prof. RNDr. Branislav Rovan, PhD.

Scientific committee

· Dana Pardubská – president

· Andrej Blaho

· Marián Dvorský

· Michal Forišek

· Jana Gajdošíková

· Branislav Katreniak

· Vladimír Koutný

· Richard Kráľovič

· Martin Macko

· Ján Oravec

· Dávid Pál

Organizing committee

· Gabriela Andrejková – president

· Jana Jacková

· Stanislav Krajči

· Oľga Kulcsárová

· Vladimír Lacko

· Tomáš Madaras

· Dušan Šveda

· Jan Vinař

· Peter Vojtáš

Guides

· Marianna Andrejková (Slovenia)

· Martin Borovička (Iran)

· Monika Bruncková (Slovakia)

· Milan Fořt (Germany)

· Monika Ivanová (Hungary)

· Ivana Jecková (Romania)

· Anna Jenčková (Czech Republic)

· Peter Krajník (Poland)

· Peter Šveda (Croatia)

Journalists

· Štefan Lančarič

· Dávid Paták

· Martin Rázus

Technical committee

· Roman Soták – chair

· Marian Andrejko

· Radoslav Kalakay

Participants

of the CEOI 2002

	code
	Country
	fuction
	name
	surname
	Address
	school
	e-mail

	CRO L
	Croatia
	leader
	Ivo
	Šeparović
	Dalmatinska 12, 10000 Zagreb
	CICA
	isepar@public.srce.hr

	CRO D
	Croatia
	deputy leader
	Krešimir
	Malnar
	
	
	malnar@acm.org

	CRO 1
	Croatia
	contestant
	Ivan
	Sikirić
	Pelabinje 12, 23205 Bibuje
	Gim. Franje Petrića
	isikiric@hotmail.com

	CRO 2
	Croatia
	contestant
	Lovro
	Pužar
	Nad Lipom 14, 10000 Zagreb
	XV. Gimnazija Zagreb
	lovro@mail.inet.hr

	CRO 3
	Croatia
	contestant
	Luka
	Kalinovčić
	Braće Domany, 10000 Zagreb
	XV. Gimnazija Zagreb
	luka.kalinovcic@mioc.hr

	CRO 4
	Croatia
	contestant
	Marko
	Živković
	Kučerina 13, 10000 Zagreb
	XV. Gimnazija Zagreb
	marko.zivkovic@zg.hinet.hr

	CRO X1
	Croatia
	guest
	Vlasta
	Šeparović
	A. Mohorovičića 12, 10490 V. Gorica
	
	vlasta.separovic@zg.tel.hr

	CRO X2
	Croatia
	Guest
	Gojko
	Bukvić
	J. S. Strossmayera, 22300 Zadar
	
	gojko.bukvic@zd.tel.hr

	CZE L
	Czech Republic
	Leader
	Tomáš
	Pitner
	Botanická 68a, Brno
	FI MU Brno
	tomp@fi.muni.cz

	CZE D
	Czech Republic
	deputy leader
	Daniel
	Kráľ
	Malostranské nám. 25, Praha
	KAM MFF UK Praha
	kral@kam.mff.cuni.cz

	CZE 1
	Czech Republic
	contestant
	Tomáš
	Gavenčiak
	
	GMK Bílovec
	gavento@centrum.cz

	CZE 2
	Czech Republic
	contestant
	Jan
	Kadlec
	Zborovská 45, 150 00 Praha 5
	GCHD
	jqp@seznam.cz

	CZE 3
	Czech Republic
	contestant
	Milan
	Straka
	Máchova 174, 386 48 Strakonice
	Gymnázium Strakonice
	straka.milan@seznam.cz

	CZE 4
	Czech Republic
	contestant
	Jiří
	Danihelka
	Čapkova 402, Písek
	SPŠ Písek
	jdsoft@seznam.cz

	GER L
	Germany
	leader
	Tobias
	Thierer
	Ferdinand-Chr.-Bauer-Str. 16, 72076 Tu"bingen
	University of Tu"bingen
	tobias@thierer.de

	GER D
	Germany
	deputy leader
	Daniel
	Jasper
	Hoerneweg 49, 26219 Oldenburg
	University of Oldenburg
	daniel.jasper@www.de

	GER 1
	Germany
	contestant
	Benjamin
	Dittes
	Tiedgestr. 5, 01326 Dresden
	
	dittes@t-online.de

	GER 2
	Germany
	contestant
	Alexander
	Hullmann
	Haferbusch 50, 51467 Bergisch Gladbach
	Nicolaus-Cusams-Gymnasium
	d.hullmann@gmx.de

	GER 3
	Germany
	contestant
	Julian
	Rüth
	Weinbergstr. 48, 97261 Gu"ntersleben
	Riemenschneider-Gymnasium Wu"rzburg
	julian.rueth@gmx.de

	GER 4
	Germany
	contestant
	Melanie
	Schmidt
	Burgerstr. 90, 44267 Dortmund
	Helene-Lange-Gymnasium
	m.s-mail@web.de

	GER X
	Germany
	guest
	Klaus
	Dingemann
	Max-Planck-Pl. 23, 45768 Marl
	Albert-Schweitzer-Gymnasium, Marl
	klaus@dingemann.de

	HUN L
	Hungary
	leader
	Gyula
	Horváth
	
	
	horvath@inf.u-szeged.hu

	HUN D
	Hungary
	deputy leader
	László
	Zsakó
	
	
	zsako@ludens.elte.hu

	HUN 1
	Hungary
	contestant
	Gábor
	Pelládi
	Miskolc, Gy"ori kapu 64, 3531
	Fo"ldes Ferenc Gimnázium
	pega@ffg.sulinet.hu

	HUN 2
	Hungary
	contestant
	Gábor
	Bergmann
	1133, Budapest, Kárpátutca 40
	Berzsémyi Dániel Gimnázium
	maffley.check@aramszu.net

	HUN 3
	Hungary
	contestant
	Tamás
	Fehér
	Domoszló, Kossuth út 82, 3263
	Neumann János Ko"zgazdasági Szakko"zépiskola és Gimnázium
	whitetom@freemail.hu

	HUN 4
	Hungary
	contestant
	Gábor
	Simkó
	9700, Szombathely, Batthyány tér 6.
	Nagy Lajos Gimnázium
	tsg@coder.hu

	HUN X1
	Hungary
	guest
	Attila
	Horváth
	
	
	

	HUN X2
	Hungary
	guest
	Ibolya
	Horváth
	
	
	

	HUN X3
	Hungary
	guest
	Zsuzsanna
	Horváth
	
	
	

	HUN X4
	Hungary
	guest
	Ferenc
	Papp
	
	
	

	IRN L
	Iran
	leader
	Mohammad
	Ghodsi
	
	Sharif University of Technology
	ghodsi@sharif.edu

	IRN D1
	Iran
	deputy leader
	Ghassem
	Jaberipour
	
	Shahid Beheshti University
	

	IRN D2
	Iran
	deputy leader
	Ruzbeh
	Tusserkani
	
	Sharif University of Technology
	tusserkani@sharif.edu

	IRN 1
	Iran
	contestant
	Hamed Ahmadi
	Nejad
	
	Young Scholars Club
	comphamed@yahoo.com

	IRN 2
	Iran
	contestant
	Siavosh
	Benabbas
	
	Young Scholars Club
	sbenabas@yahoo.com

	IRN 3
	Iran
	contestant
	Hassan
	Zakeri
	
	Young Scholars Club
	hassan_zakeri@yahoo.com

	IRN 4
	Iran
	contestant
	Mohammad Hossein
	Bateni
	
	Young Scholars Club
	mhbateni@yahoo.com

	IRN 5
	Iran
	contestant
	Mohammad
	Moharrami
	
	Young Scholars Club
	mmmx_moh@yahoo.com

	IRN 6
	Iran
	contestant
	Ashkan
	Nikseresht
	
	Young Scholars Club
	ashkan_nikseresht@yahoo.com

	POL L
	Poland
	leader
	Krzysztof
	Diks
	
	Warsaw University
	diks@mimuw.edu.pl

	POL D
	Poland
	deputy leader
	Krzysztof
	Stencel
	
	Warsaw University
	stencel@mimuw.edu.pl

	POL 1
	Poland
	contestant
	Bartosz
	Walczak
	Studencka 12, Kraków
	VLO Kraków
	mydeath@v-lo.krakow.pl

	POL 2
	Poland
	contestant
	Karol
	Cwalina
	Nowowiejska 37A
	XIV LO Warszawa, Nowowiejska 37A
	karolc@staszic.waw.pl

	POL 3
	Poland
	contestant
	Marcin
	Michalski
	Legionów 27, Gdynia
	III LO. Gdynia
	cyfra@lonet.gdynia.pl

	POL 4
	Poland
	contestant
	Piotr
	Stańczyk
	Nowowiejska 37A
	XIV LO Warszawa, Nowowiejska 37A
	idsoft@staszic.waw.pl

	ROM L
	Romania
	leader
	Clara
	Ionescu
	Cluj
	Bales Bolyai University
	clara@cs.ubbcluj.ro

	ROM D
	Romania
	deputy leader
	Doru
	Popescu Anastasiu
	Slatina, elt, str. Cazarniuni, Nr. 18, cod 0500
	Colegiul National Radu Coreccanu
	dopopescu@pcnet.pcnet.ro

	ROM 1
	Romania
	contestant
	Daniel
	Dumitran
	Bucuresti, str. trestiana 1A, bloc 8A, scara B, et 7, ap 86, sector 4
	Liceul International de Informatica, Bucuresti
	odumitran@go.ro

	ROM 2
	Romania
	contestant
	Victor
	Costan
	Bucuresti, Timisoara 17A, Block 106 A, apt 34, sector 6
	Colegiul National Tudor Vianu, Bucuresti
	victorsin@acpol.mediasat.ro

	ROM 3
	Romania
	contestant
	Cosmin
	Raianu
	Constanta, str. Stelutei, nr 7, bl. Fd 15, ap 15
	Liceul International de Informatica, Constanta
	cosh@k.ro

	ROM 4
	Romania
	contestant
	Andrei
	Markovits
	Satu Mare, str. Wolfenbuttel, nr. 5, cod 3900
	Colegiul Mihai Eminescu, Satu Mare
	amarkovits@yahoo.com

	SLO L
	Slovenia
	leader
	Peter
	Keše
	Glavni Trg 25, Kranj
	
	peter.kese@ijs.si

	SLO 1
	Slovenia
	contestant
	Tomaž
	Gregorec
	Senično 16, Si 4294 Križe
	SESŠ Kranj
	tomaz@eror.net

	SLO 2
	Slovenia
	contestant
	Jurij
	Kodre
	Mala Vas 15B, 1000 Ljubljana
	Škofijska klasična gimnazija
	jurij.kodre@hotmail.com

	SLO 3
	Slovenia
	contestant
	Luka
	Bradeško
	Lučine 41, 4224 Gorenja Vas
	Gimnazija šk. Loka
	bradeskojest@yahoo.com

	SLO 4
	Slovenia
	contestant
	Mitja
	Trampuš
	Pregljeva 41, 1000 Ljubljana
	Gimnazija Bežigrad
	m@email.si

	SVK L
	Slovakia
	leader
	Jozef
	Jirásek
	
	ÚI PF UPJŠ, Košice
	jirasek@kosice.upjs.sk

	SVK D
	Slovakia
	deputy leader
	Rastislav
	Krivoš-Belluš
	
	ÚI PF UPJŠ, Košice
	

	SVK 1
	Slovakia
	contestant
	Peter
	Bella
	
	Gymnázium Jura Hronca, Bratislava
	bella@gjh.sk

	SVK 2
	Slovakia
	contestant
	Jozef
	Tvarožek
	
	Gymnázium Jura Hronca, Bratislava
	tvarozek@gjh.sk

	SVK 3
	Slovakia
	contestant
	Radovan
	Bauer
	
	Gymnázium, Poštová 9, Košice
	stopar@post.sk

	SVK 4
	Slovakia
	contestant
	Tomáš
	Dzetkulič
	
	Gymnázium Pavla Horova, Michalovce
	tom.ted@post.sk

	SVK 5
	Slovakia
	contestant
	Ján
	Mazák
	
	Gymnázium, Poštová 9, Košice
	mazo@post.sk

	SVK 6
	Slovakia
	contestant
	Pavol
	Mravec
	
	Gymnázium Karola Štúra, Modra
	pavolmravec@hotmail.com

	SVK 7
	Slovakia
	contestant
	Michal
	Malý
	
	Gymnázium, Žiar nad Hronom
	michalmaly@yahoo.com

	SVK 8
	Slovakia
	contestant
	Marek
	Tesař
	
	Gymnázium B. S. Timravy, Lučenec
	6+1@post.sk

Programme

of the CEOI 2002

	Day
	Morning
	Afternoon
	Evening

	Sun

June 30
	arrival

11,00
	
	20,00

L: meeting, Faculty of Science

	Mon

July 1
	7,00 – 8,30

breakfast, Akadémia

10,00

Opening Ceremony,

Faculty of Science,

Lecture Room P1,
	13,30

lunch, Faculty

14,30 – 16,00

practice competition, Faculty
	19,00

Welcome party, Akadémia

21,00

L: selection of tasks, Faculty

	Tue

July 2
	6,30 – 7,30

breakfast

8,30 – 13,30

competition, Faculty
	13,30

lunch, Faculty

14,30 – 17,00

gym

18,30 – 20,15

swimming
	20,30

dinner, Akadémia

21,15 – 22,15

test of evaluation, Faculty

	Wed

July 3
	6,30 – 7,30

breakfast

7,30

departure for trip

to High Tatras
	
	19,30

dinner, Akadémia

21,00

L: selection of tasks, Faculty

	Thu

July 4
	6,30 – 7,30

breakfast

8,30 – 13,30

competition, Faculty
	13,30

lunch, Faculty

14,30 – 16,30

gym

17,00 – 18,00

test of evaluation, Faculty
	18,30

dinner, Akadémia

20,00 – 22,00

bowling

19,30

L: evaluation of competition, Faculty

21,00

L: Beer Party

	Fri

July 5
	6,30 – 7,30

breakfast

7,30

departure for trip to

Bardejov and Levoča
	13,00

lunch in Bardejov and in Levoča
	19,00

Closing Ceremony, Akadémia

	Sat

July 6
	departure

	
	

Tasks of the CEOI 2002

Dear reader,

As you maybe know, in the year 2002 the Central European Olympiad in Informatics took place in Košice, Slovakia on 30 June – 6 July. We did our best to prepare the best CEOI ever (and as a beginning of a new tradition, we compiled all the prepared tasks and also their solutions into this booklet. We hope that this booklet will help many contestants to prepare for their future programming contests.

Let me tell you a few words about the people who prepared this contest. In Slovakia almost all local programming contests are organized by a group of young enthusiastic students of Comenius University, Bratislava. You may already have heard about our Correspondence Seminar in Programming or the Internet Problem Solving Contest (which was in our opinion the first open-data contest). We are also responsible for the national Informatics Olympiad.

However, this CEOI was by far the most important programming contest we organized so far and all of us worked very hard to prepare everything for it. I have to mention that none of us helps to organize these contests for profit, as we hardly ever get any. I think that the least I can do now is to say a big Thank you! to everyone that helped to make this CEOI a little bit better.

Last but not least, none of us is a native English speaker, also please be tolerant to any mistakes you may encounter.

Michal Forišek

Day 1: Bugs Integrated, Inc.

Author of the problem: Michal Forišek
Contest-related materials by: Dávid Pál, Martin Pál, Martin Macko
100 points

time limit 30 s, memory limit 8 MB

Bugs Integrated, Inc. is a major manufacturer of advanced memory chips. They are launching production of a new six terabyte Q-RAM chip. Each chip consists of six unit squares arranged in a form of a 2x3 rectangle. The way Q-RAM chips are made is such that one takes a rectangular plate of silicon divided into NxM unit squares. Then all squares are tested carefully and the bad ones are marked with a black marker.

[image: image1.jpg]
Finally, the plate of silicon is cut into memory chips. Each chip consists of 2x3 (or 3x2) unit squares. Of course, no chip can contain any bad (marked) squares. It might not be possible to cut the plate so that every good unit square is a part of some memory chip. The corporation wants to waste as little good squares as possible. Therefore they would like to know how to cut the plate to make the maximum number of chips possible.

Task

You are given the dimensions of several silicon plates and a list of all bad unit squares for each plate. Your task is to write a program that computes for each plate the maximum number of chips that can be cut out of the plate.

Input data

The first line of the input file consists of a single integer D (1 ≤ D ≤ 5), denoting the number of silicon plates. D blocks follow, each describing one silicon plate. The first line of each block contains three integers N (1 ≤ N ≤ 150), M (1 ≤ M ≤ 10), K (0 ≤ K ≤ MN) separated by single spaces. N is the length of the plate, M is its height and K is the number of bad squares in the plate. The following K lines contain a list of bad squares. Each line consists of two integers x and y (1 ≤ x ≤ N, 1 ≤ y ≤ M) – coordinates of one bad square (the upper left square has coordinates [1,1], the bottom right is [N,M]).

Output data

For each plate in the input file output a single line containing the maximum number of memory chips that can be cut out of the plate.

Example

Input

 2

 6 6 5

 1 4

 4 6

 2 2

 3 6

 6 4

 6 5 4

 3 3

 6 1

 6 2

 6 4

Output

 3

 4

[image: image2.jpg]
Solution

We present a solution based on dynamic programming with the time complexity O(MN3M). We note that all the coordinates [x,y] of squares are decreased by one, that is 0 ≤ x < N, 0 ≤ y < M, as is common for C programmers.

Definition 1: Let B=(b0, b1, …, bM-1) be a vector of numbers (called the border). We define the borderset S(B) as the set of all squares [x,y] of the plate satisfying x ≤ by. Informally, it is the set of those squares that lie to the left of the border B. We usually won't distiguish between the border and its set.

[image: image3.jpg]
The set of the border B=(1,5,0,-7,3) (N=9, M=5).

Definition 2: For each [i,j] (0 ≤ i < N, 0 ≤ j < M) we define an [i,j]-border as B[i,j] = (b0, b1, ..., bM-1), where b0=b1=...=bj=i and bj+1=...=bM-1=i-1. We will call the set S(B[i,j]) an [i,j]-baseline. In other words S(B[i,j]) is the set of the squares of the plate, lying to the left of the square [x,y] or in the same column and above it (including the square [x,y]).

[image: image4.jpg]
A [4,2]-border B[4,2]=(4,4,4,3,3) and its [4,2]-baseline.

Definition 3: Let's have a baseline with the border B[i,j]. Let P=(p0, p1, ..., pM-1), pi є {0,1,2} be a vector. We will denote the vector (b0-p0, ..., bM-1-pM-1) as B-P. We define a P-profile for this baseline as the set S(B[i,j]-P). The symbol 0 will denote the all-components-zero profile and ej will denote a profile that has all components zero except for pj=1.

[image: image5.jpg]
The profile P=(0,2,1,0,2) of a [4,2]-baseline.

We can think of a profile as of a number between 0 and 3M-1, written in base 3. We will sometimes use P as an index of an array in this sample solution. In the implementation, we first convert P from base 3 into base 10 and then use it as an index.

We can view the plate as the set of its good squares G. The original problem was to determine what is the maximum number of the chips that can be cut out of the plate G.

The basic idea how to solve the problem is to use dynamic programming in the following manner: For each baseline B[i,j] and for each profile P we compute A[i,j,P] – the maximum number of chips that can be cut out of the set (part of the plate) G ∩ S(B[i,j]-P). Note that G ∩ S(B[N-1][M-1]-0) = G, also the number A[N-1, M-1, 0] gives us the answer to problem.

The part of the plate G ∩ S(B[0,j]) is too thin to cut any chip out of it, so for the beginning of the table we have A[0,j,P]=0, for any j and any P.

We will process all the other baselines B[i,j] in the order from left to right (i.e. i increases) and the baselines with the same i from top to bottom (i.e. j increases). For each baseline we consider each profile P.

Let's have a fixed baseline B[i,j] and a fixed profile P. There are two possibilities: either pj>0 or pj=0.

If pj>0, then G ∩ S(B[i,j]-P) = G ∩ S(B'-P'), where B'=S(B[i',j']) is the previous baseline in the order we process them and P' = P-ej. Because these two sets are equal, the maximum number of chips that can be cut out of them must also be equal. Therefore A[i,j,P] = A[i',j',P'].

If pj=0, there are three possibilities how to obtain the desired maximum of chips, that can be cut out of G ∩ S(B-P).

· We cut no chip having the lower right corner at the position [i,j].

· We cut a horizontal (3x2) chip having the lower right corner at the position [i,j].

· We cut a vertical (2x3) chip having the lower right corner at the position [i,j].

The maximum number of the chips corresponding to the first case is A[i',j',P], where S(B[i',j']) is the previous baseline in the order we process them.

The maximum number of the chips corresponding to the second case is A[i'',j'',P+2ej+2ej-1], where S(B[i'',j'']) is the second previous baseline in the order we process them.

[image: image6.jpg]
We are processing the baseline S(B[4,3]) with the profile P=(0,1,0,0,2).

It is possible to cut a horizontal chip here.

The second previous baseline is S(B[4,1]), the new profile will be P''=(0,1,2,2,2).

Note that S(B[4,1]-P'') is exactly S(B[4,3]-P) without the horizontal chip.

The maximum number of the chips corresponding to the third case is A[i''',j''',P+ej+ej-1+ej-2], where S(B[i''',j''']) is the third previous baseline in the order we process them.

Clearly A[i,j,P] will be the maximum of these three numbers. (We consider the second and third case only if the corresponding chip can be cut out at this position.)

The test whether a horizontal or a vertical chip can be cut out at some position is easy. A horizontal chip can be cut out iff there are no bad squares at those positions and i ≥ 2, j ≥ 1 and pj=pj-1=0. Similarly a vertical chip can be cut out iff there are no bad squares at those positions and i ≥ 1, j ≥ 2 and pj=pj-1=pj-2=0. Thus this test takes only a constant amount of time.

It can be easily shown that we have to remember the values A[i,j,P] only for the last four baselines (the one being computed and the three previous ones). There is only 3M ≤ 310 < 60000 profiles for each baseline, so this will easily fit into memory.

The time complexity of the algorithm presented here is as promised O(MN3N), because there are exactly 3M profiles and O(MN) baselines.

Day 1: Conqueror's batalion

Author of the problem: unknown

Contest-related materials by: Vladimír Koutný
100 points

time limit 1 s, memory limit 16 MB

In the whole history of mankind one can find several curious battles, like the following one in France, in 1747…

There was a fortress in Bassignac-le-Haut, a small village lying on the left bank of river Dordogne, just over the Chastang dam. From the dam up to the fortress there was a wide staircase made out of red marble. One day in the morning, the guard spotted a large battalion approaching the fortress, with a dreaded leader – The Conqueror.

When The Conqueror reached the fortress, he was already awaited by its commandant. As the commandant had only a small part of his soldiery available, he proposed to The Conqueror: “I see that you have many soldiers behind you, standing on the stairs. We can play a small ‘game’: In each round, you will divide your soldiers into two groups in an arbitrary way. Then I will decide which one of them stays and which one goes home. Each soldier that stays will then move up one stair. If at least one of your soldiers reaches the uppermost stair, you will be the winner, in the other case, you will be the loser. And your destination will be the dam down there…”, added the commandant, pointing to the Chastang dam by his hand.

The Conqueror immediately liked this game, so he agreed and started to ‘conquer’.

Task

Your role is The Conqueror's now. There are N stairs to the fortress (2≤ N≤ 2000) and you have at most 1 000 000 000 soldiers. For each stair, you are given the number of soldiers standing on it, with number 1 being the uppermost stair and N the bottom one. None of your soldiers stands on stair 1 at the beginning.

For each starting position given to your program, if the position is winning (i.e. there is a strategy that enables you to win the game regardless of your opponent's moves), your program should win. Otherwise it should just play the game (and lose) correctly.

This is an interactive problem; you will play against a library as specified below. In each round, your program will describe a group of soldiers to our library. The library returns 1 or 2 specifying which group of soldiers should stay (1 means the group you described, 2 means the rest of the soldiers). In case the game ends (either because you won or there are no more soldiers in the game), the library will terminate your program correctly.Your program may not terminate in any other way.

Library interface

The library libconq provides two routines:

· start – returns the number N and fills an array stairs with numbers of soldiers standing on the stairs (i.e. there are stairs[i] soldiers standing on stair i)

· step – takes an array subset (with at least N elements (N+1 elements in C/C++, see below), describing the group of soldiers you chose, and returns 1 or 2 as described above; the group of soldiers is specified by numbers of soldiers on each stair, as in the start function

If you fail to specify a valid group of soldiers, the game will be terminated and your program will score zero points for the particular test case. Please note that also in C/C++ the stairs are numbered starting from 1.
Following are the declarations of these routines in FreePascal and C/C++:

procedure start(var N: longint; var stairs:array of longint);

function step(subset:array of longint): longint;

void start(int *N, int *stairs);

int step(int *subset);

Below you can find examples of library usage in both FreePascal and C/C++; both fragments do the same – start the game and then play one round, with the chosen group containing all soldiers on randomly chosen stairs. Your real program will probably play the rounds in an infinite loop.

You are strongly encouraged to define the arrays stairs and subset in the same way as they are defined in the example below. (Note that the FreePascal library returns its answer in the first N elements of the array regardless of how you defined it, the C/C++ library returns its answer in the elements with indices 1 to N.)

FreePascal example

uses libconq;

var

 stairs: array[1..2000] of longint;

 subset: array[1..2000] of longint;

 i,N,result: longint;

...

start(N,stairs);

...

for i:=1 to N do

 if random(2)=0

 then subset[i]:=0

 else subset[i]:=stairs[i];

result:=step(subset);

...

C/C++ example

#include "libconq.h"

int stairs[2001];

int subset[2001];

int i,N,result;

...

start(&N, stairs);

...

for (i=1;i<=N;i++)

 if (rand()%2==0)

 subset[i]=0;

 else subset[i]=stairs[i];

result=step(subset);

...

You have to link the library to your program – by uses libconq; in FreePascal and by #include "libconq.h" in C/C++, where you have to compile your program by adding libconq.c to the compiler arguments.

An example of the game

	You
	Library

	start(N,stairs)
	N=8, stairs=(0,1,1,0,3,3,4,0)

	step((0,1,0,0,1,0,1,0))
	returns 2

	step((0,1,0,0,0,1,0,0))
	returns 2

	step((0,0,0,3,2,0,0,0))
	returns 1

	step((0,0,2,0,0,0,0,0))
	returns 2

	step((0,1,0,0,0,0,0,0))
	returns 2

	step((0,1,0,0,0,0,0,0))
	no return: you won

Resources

On the web page you may find example libraries for both C/C++ and FreePascal. These libraries are different from those that will be used during testing. You may use them to make sure your library calls are correct. The example library reads the input from the file libconq.dat, containing two lines. On the first line is the number N of stairs, the second line contains N integers – the numbers of soldiers on each of the stairs 1..N.

The file libconq.dat for the example above would look like this:

 8

 0 1 1 0 3 3 4 0

Solution

Let's try to tell somehow how good a position is. If we have two soldiers on the same stair (and no other soldiers), in the next round we will have at most only one soldier but one stair higher. In this way, one soldier on the stair S is equivalent to two soldiers on the stair S+1. From now on a soldier on the stair S will have the value 2N-S. The value of a position will be the sum of the values of all the soldiers. Note that all positions, where the Conqueror has won, have the value at least 2N-1 because there is a soldier on the stair number 1.

Losing positions

If the value of the position is less than 2N-1 and the commandant plays optimally, the Conqueror will lose.

Proof: If the value is less then 2N-1, the Conqueror didn't win yet. Let's take a look at one round of the game. The Conqueror divides his soldiers in some way. The group with the smaller (or equal) value has to have the value less than 2N-2. The commandant will choose this group to stay and the other to leave. When any soldier moves up one stair, his value doubles. Therefore the value of the new position will be less than 2.2N-2=2N-1 and the number of soldiers will decrease. There is a finite number of soldiers, and so the game ends in a finite number of moves. The value of a position will always be less than 2N-1, also at the end there will be no soldiers and the Conqueror will lose, q.e.d.

Winning positions

If the value of the position is at least than 2N-1 and the Conqueror plays optimally, he will win.

Proof: The Conqueror has to divide the soldiers into two groups so that the value of each group will be at least 2N-2. Then regardless of the commandant's choice the new position will again have the value at least 2N-1 and there will be less soldiers than before. There is a finite number of soldiers, and so the game will end in a finite number of moves. At the end of the game the value of the position will be at least 2N-1. This means that some of the soldiers has to stand on the stair 1 and the Conqueror won.

We only need to show, that the Conqueror can always divide the soldiers in the way described above.

Lemma: Let a1, ..., aM (2N-2≥ a1 ≥ ... ≥ aM, M ≥ 2) be powers of two with ∑i=1N ai ≥ 2N-2. Then for some k holds ∑i=1k ai = 2N-2.

Proof of the lemma: Induction on M. For M=2 the lemma holds. Now let M>2 and ∑i=1M ai > 2N-2. Since the sum and 2N-2 are multiples of aM, the sum is at least 2N-2+aM. This means that ∑i=1M-1 ai ≥ 2N-2 and we may apply the induction assumption.

From the lemma we get that if the sum of the soldiers' values is at least 2N-1, we may select the first (e.g. closest to the top of the staircase) few of them so that the sum of their values will be exactly 2N-2. The Conqueror may also divide his soldiers into these two groups, q.e.d.

The solution is a straightforward implementation of the ideas above. We will have to implement arithmetics with big numbers to count the value of a position. If we are in a losing position, we choose an empty set and loose instantly. If we are in a winning position, we find the place where to split the soldiers by adding the values of soldiers on stairs 1, 2, ... until the value reaches 2N-2. Each operation with the big numbers we need can be implemented to run in O(N) time, also the time required for one move is O(N2).

We could pre-compute some data at the beginning of the game to have a faster algorithm. Let si be the number of soldiers on the stair i. We will pre-compute the sums Tk = ∑i=1k si 2N-i. Let's number the soldiers from 1 to some M ordered by the stair, where they stand at the beginning of the game. If we play the game as described above, we may always split the soldiers so that both groups have a consecutive set of numbers. We will keep track of the current numbers of soldiers on each stair and we will keep two integers pointing to the uppermost and lowermost soldier. In fact, we won't move the soldiers upwards, because we know, that after r rounds they are exactly r stairs higher.

From the partial sums we have we are able to compute the value of any consecutive set of soldiers in O(N) time. Using this information we may binary search the place where to split the soldiers. This solution also requires O(N2) time for pre-computing the partial sums and then O(NlogN) time for each move.

The library your programs played against used the commandant's strategy described above, with the difference that if both possibilities led to a winning position for your program, the library chose the one of them in which the uppermost soldier was on a lower stair.

Day 1: A decorative fence

Author of the problem: Michal Forišek
Contest-related materials by: Richard Kráľovič, Jana Gajdošíková, Marián Dvorský
100 points

time limit 1 s, memory limit 1 MB

Richard just finished building his new house. Now the only thing the house misses is a cute little wooden fence. He had no idea how to make a wooden fence, so he decided to order one. Somehow he got his hands on the ACME (A Company Making Everything) Fence Catalogue 2002, the ultimate resource on cute little wooden fences. After reading its preface he already knew, what makes a little wooden fence cute.

A wooden fence consists of N wooden planks, placed vertically in a row next to each other. A fence looks cute if and only if the following conditions are met:

· The planks have different lengths, namely 1, 2, …, N plank length units.

· Each plank with two neighbors is either larger than each of its neighbors or smaller than each of them. (Note that this makes the top of the fence alternately rise and fall.)

It follows, that we may uniquely describe each cute fence with N planks as a permutation a1, …, aN of the numbers 1, …, N such that ((i; 1<i<N) (ai - ai-1)*(ai - ai+1)>0 and vice versa, each such permutation describes a cute fence.

It is obvious, that there are many different cute wooden fences made of N planks. To bring some order into their catalogue, the sales manager of ACME decided to order them in the following way: Fence A (represented by the permutation a1, …, aN) is in the catalogue before fence B (represented by b1, …, bN) if and only if there exists such i, that ((j<i)aj=bj and (ai < bi). (Also to decide, which of the two fences is earlier in the catalogue, take their corresponding permutations, find the first place on which they differ and compare the values on this place.) All the cute fences with N planks are numbered (starting from 1) in the order they appear in the catalogue. This number is called their catalogue number.

[image: image7.jpg]
All cute fences made of N=4 planks, ordered by their catalogue numbers.

After carefully examining all the cute little wooden fences, Richard decided to order some of them. For each of them he noted the number of its planks and its catalogue number. Later, as he met his friends, he wanted to show them the fences he ordered, but he lost the catalogue somewhere. The only thing he has got are his notes. Please help him find out, how will his fences look like.

Input data

The first line of the input file contains the number K (1≤ K≤ 100) of input data sets. K lines follow, each of them describes one input data set.

Each of the following K lines contains two integers N and C (1≤ N≤ 20), separated by a space. N is the number of planks in the fence, C is the catalogue number of the fence.

You may assume, that the total number of cute little wooden fences with 20 planks fits into a 64-bit signed integer variable (long long in C/C++, int64 in FreePascal). You may also assume that the input is correct, in particular that C is at least 1 and it doesn't exceed the number of cute fences with N planks.

Output data

For each input data set output one line, describing the C-th fence with N planks in the catalogue. More precisely, if the fence is described by the permutation a1, …, aN, then the corresponding line of the output file should contain the numbers ai (in the correct order), separated by single spaces.

Example

Input

 2

 2 1

 3 3

Output

 1 2

 2 3 1

Solution

This problem could be solved using dynamic programming. Let TN,iup be the number of permutations that describe some cute fence of length N (let's call them fence permutations) starting with the element i and having the second element greater than the first one. Analogically, TN,idown will be the number of fence permutations of length N starting with the element i and having the second element less than i. If the second element of a permutation is greater than the first one, we will say that the permutation is going up, otherwise it is going down.

We can compute the values T for all N from 1 to 20, for all appropriate i and for both up and down in advance from the following facts:

· TN,1down=0
· TN,j+1down=∑k=1j TN-1,kup=TN,jdown+TN-1,jup
· TN,iup=TN,N+1-idown
We get the second equation as follows: Take all the fence permutations of length N, starting with j+1 and going down. The second element k of this permutation is a number between 1 and j. If we take our permutation without its first element (j+1) and decrease all elements greater than j by 1, we get some fence permutation of length N-1, starting with k and going up. It is easy to verify, that this is a bijection between the set of fence permutations of length N, starting with j+1 and going down, and the set of fence permutations of length N-1, starting with an element less than j+1 and going up. Thus the two sets have the same cardinality.

Values of T could be also hardwired as constants into the solution, but it does not make much sense for N ≤ 20 as computing them doesn't take much time and we do it only once. These values will help us find the fence permutation with the catalogue number C.

There are TN,iup+TN,idown fence permutations starting with i. Now we can easily determine the first element a1 in the C-th fence permutation. Fence permutations starting with 1 have the catalogue numbers from 1 to TN,1up+TN,1down, those starting with 2 have the catalogue numbers from T N,1up+T N,1down+1 to TN,1up+TN,1down+TN,2up+TN,2down, and so on. And so a1 is the smallest number, for which ∑i=1a1 (TN,idown + T N,iup) ≥ C.

Next, we will find the second element a2. Suppose we decrease all elements of the permutation we seek, that are greater than a1, by 1. Then the rest of the permutation will be a fence permutation of length N-1. We know that if its first element is less than a1, it has to go up, otherwise it has to go down. We also know that the fence permutation we seek is the C1 = (C - ∑i=1a1-1 (TN,idown + TN,iup))-th of all such fence permutations.

For x from 1 to a1-1 there are TN-1,xup such permutations, starting with x, for greater x there are TN-1,xdown such permutations. So we find the first element y of this permutation in the same way as above. If y<a1 then a2=y else a2=y+1.

Now we already know whether the permutation we seek goes up or down and we know its first two elements. There probably are more such permutations and we know the catalogue number C2 of our permutation between all possible ones. From now on determining the next element will be done in the same way.

Suppose we know the first k (k≥ 2) elements of our permutation and its catalogue number Ck between all such permutations. How to determine the (k+1)-th element?

We will view the rest of the permutation as a permutation of a smaller length (with appropriately decreased elements). Last two known elements determine whether this permutation is going up or down. We then find the first element of the modified permutation in a similar way than above (we count `good' permutations starting with x until we reach Ck) and then appropriately increase it to get the next element of our permutation. Finally we compute the new value Ck+1 by subtracting the count of permutations starting with a lower element from Ck.

In our implementation, the program always works with permutations of numbers 0..m-1 for some m, instead of permutations of some m numbers from range 1..N. It is also necessary to `decode' these permutations. Number i will be decoded to i+1-th smallest number from 1..N, that was not used before.

Both determining the elements of the permutation and decoding the permutation takes O(N2) time. Precomputing the values of T takes the same time. Memory needed for the values of T is also O(N2).

Day 2: A highway and the seven dwarfs

Author of the problem: Michal Forišek
Contest-related materials by: Ján Oravec, Richard Kráľovič

100 points

time limit 5 s, memory limit 16 MB

Once upon a time, there was a land where several families of dwarfs were living. This land was called Dwarfland. Each family lived in one house. Dwarfs were often visiting their friends from the other families. Because the Dwarfland was free of evil, it happened that each dwarf visited each other during some short period of time.

Once, the humans living in countries around Dwarfland decided to build several straight highways. As the humans weren't aware of the dwarfs, some of the planned highways passed through Dwarfland. The dwarfs discovered this and were quite unhappy about it. The dwarfs are very little, and also very slow, so they are unable to cross the highway safely.

The dwarfs managed to get the plans for the highways somehow, and now they need your help. They would like to keep on visiting each other, so they don't like those highways which divide their houses into two non-empty parts. After they find out which highways they don't like, they will magically prevent the humans from building them.

The dwarfs are very little, and cannot reach the keyboard. So they asked for your help.

Task

Given is a number N of points (houses) in the plane and several straight lines (highways). For each given line, your task is to determine whether all N points lie on the same side of the line or not. Your program has to output the answer for the currently processed line before reading the description of the next one. You may assume that no highway passes through any of the houses.

Input and output description

Your program is supposed to read the input from the standard input (stdin in C/C++, input in FreePascal) and write its output to the standard output (stdout in C/C++, output in FreePascal). The first line of the input contains one integer N (0≤ N≤ 100000). N lines follow, the i-th of them contains two real numbers xi, yi (-109 ≤ xi, yi ≤ 109) separated by a single space – the coordinates of the i-th house.

Each of the following lines contains four real numbers X1, Y1, X2, Y2 (-109 ≤ X1, Y1, X2, Y2 ≤ 109) separated by a single space. These numbers are the coordinates of two different points [X1, Y1] and [X2, Y2], lying on the highway. For each line of input, your program is supposed to output a line containing the string GOOD if all of the given points are on the same side of the given line, or BAD if the given line divides the points. After writing out each line of the output, your program should flush the output buffer. In the following sections you may find an example on how to do this.

We will terminate your program after it gives the answer for the last highway. Your program is not supposed to terminate by itself. You may assume that there will be no more than 100 000 highways.

Input and output routines in C/C++

Reading one line (note that there is no space after the last %lf):

double X_1, Y_1, X_2, Y_2;

scanf(" %lf %lf %lf %lf",&X_1,&Y_1,&X_2,&Y_2);

Writing the output for one line:

printf("GOOD\n"); fflush(stdout);

Input and output routines in FreePascal

Reading one line:

var X_1, Y_1, X_2, Y_2 : double;

read(X_1,Y_1,X_2,Y_2);

Writing the output for one line:

writeln('GOOD'); flush(output);

Warning

You are adviced to use the double data type (in both C/C++ and FreePascal) to store real numbers. Note that when using real number arithmetics, rounding errors may occur. If you want to test, whether two real numbers x, y are equal, don't test whether x=y but whether |x-y|<ε (where ε is a small constant, 10-4 will suffice).

Example

Input

 4

 0.0 0

 6.00 -0.001

 3.125 4.747

 4.747 0.47

 5 3 7 0

 4 -4.7 7 4.7

 4 47 4 94

Output

 GOOD

 BAD

 BAD

[image: image8.jpg]
Solution

First of all note that a highway is good iff it doesn't intersect the convex hull of all dwarfs' houses (if it does intersect the convex hull, it intersects its edge and the vertices of this edge are two houses lying on different sides of the highway). After reading the coordinates of the N houses we may pre-compute their convex hull, e.g. using some well-known algorithm running in O(NlogN) time.

Now we will be given many lines and for each of them we have to decide, whether it intersects a given convex polygon. How to do this in a reasonable time? Suppose we have a line with some fixed direction. According to this direction, some of the vertices of the polygon is the leftmost one and some of them is the rightmost one. Clearly the line intersects the polygon iff these two points lie in different half-planes. Also it would suffice if we could find the leftmost and the rightmost point for a given direction.

There are a few different methods how to find them in O(logN) time, we will present one that involves some more pre-computation, but is in our opinion easiest to implement.

Suppose we have a fixed direction and we know the leftmost and the rightmost point for this direction. If we now rotate the direction by a small angle, it is very likely that the leftmost and the rightmost point won't change. Let's take a closer look on when does a change occur. We'll draw two lines with our direction, one of them passing through the leftmost point and one through the rightmost one.

When we rotate the direction, the leftmost and rightmost point won't change until one of the sides of the convex hull will lie on one of the two lines. In this moment the other end of this side will become the new left/rightmost point. Also the two points we seek change only when the direction of the line is the direction of one of the convex polygon's sides.

There polygon has O(N) sides and their directions divide the set of all directions (e.g. angles of the line with the x-axis) into O(N) intervals. For each of them we compute the leftmost and the rightmost point using the algorithm described above. This phase can be implemented in O(N) time.

Now if we get a line, we simply compute its direction and use binary search to find out its interval (and the corresponding two points) in O(logN). If the number of lines is M, the total time complexity of this algorithm is O((M+N)logN).

Day 2: Royal guards

Authors of the problem: Michal Forišek, Martin Pál
Contest-related materials by: Marián Dvorský, Michal Forišek
100 points

time limit 15 s, memory limit 8 MB

Once upon a time, there was a kingdom. It had everything a kingdom needs, namely a king and his castle. The ground-plan of the castle was a rectangle that was divided into MxN unit squares. Some of the squares are walls, some of them are free. We will call each of the free squares a room. The king of our kingdom was extremely paranoid, so one day he decided to make hidden pits (with alligators at the bottom) in some of the rooms.

But this was still not enough. One week later, he decided to place as many guards as possible inside his castle. However, this won't be so simple. The guards are trained so that immediately after they see someone, they shoot at him. And so the king has to place the guards carefully, because if two guards would see each other, they would shoot at themselves! Also evidently the king can't place a guard into a room with a pit.

Two guards in a room see each other, so each room may contain at most one guard. Two guards in different rooms see each other if and only if the squares corresponding to their rooms are in the same row or in the same column of the plan of the castle and there is no wall between them. (The guard can see only in four directions, much like a rook in chess.)

Task

Your task is to find out, how many guards can the king place inside his castle (according to the rules above) and to find one possible assignment of that many guards into the rooms.

Input data

The first line of the input file contains two numbers M, N (1≤ M,N ≤ 200) – the dimensions of the ground-plan of the castle. The i-th of the following M lines contains N numbers ai,1, …, ai,N, separated by single spaces, where:

· ai,j=0 means that the square [i,j] is free (a room without a pit)

· ai,j=1 means that the square [i,j] contains a pit

· ai,j=2 means that the square [i,j] is a wall

Note that the first coordinate of a square is the row and the second one is the column.

Output data

The first line of the output file should contain the maximum number K of guards the king may place inside his castle. The following K lines should contain one possible assignment of K guards into the free rooms of the castle so that no two guards would see each other.

More precisely, the i-th of these lines should contain two integers ri, ci separated by a single space – the coordinates of the room where i-th guard will be placed (ri is the row and ci is the column).

[image: image9.jpg]
Castle from the example input and one possible correct output.

Example

Input

 3 4

 2 0 0 0

 2 2 2 1

 0 1 0 2

Output

 2

 1 2

 3 3

Solution

For easier implementation, let the castle be surrounded by walls. A row segment will be each continuous part of some row that doesn't contain a wall and cannot be extended in any direction (e.g. immediately to the left and to the right of it are walls). Similarily we define a column segment. Clearly each segment may contain at most one guard.

Let's build a bipartite graph where vertices of one partition correspond to the row segments, vertices of the other partition correspond to the column segments and two vertices are connected by an edge iff the corresponding row segment and column segment intersect and their intersection doesn't contain a pit. In other words the edges correspond to the squares where a guard may stand.

Now consider any valid placement of guards. Then the edges corresponding to places where guards stand form a matching in our graph – each row segment and each column segment contains at most one guard, and thus each vertex incides with at most one edge. On the other hand each matching in our graph corresponds to some valid placement of the guards.

In other words, to place the maximum number of guards into the castle, it suffices to find a maximum matching in the graph we constructed above. There is a well-known algorithm to do this in O(|V|.(|V|+|E|)) time, based on repeated construction of an augmenting path and exchanging matched vs. unmatched edges along it. As |V|,|E|=O(MN), this algorithm has the time complexity O(M2N2).

Day 2: Birthday party

Author of the problem: Michal Forišek

Contest-related materials by: Michal Forišek, Jana Gajdošíková
100 points

John's birthday is approaching slowly, and as every year, John is going to organize a great garden party. He wants all his friends to come, but (sadly) he knows, that it is almost impossible. For example Susie left Steve last week, and it will be almost impossible to make both of them come. John spent most of the last week visiting his friends and asking them to come. He got some promises, but even more requests. ('If you invite me, you just have to invite my boyfriend!', exclaimed Veronica. 'If you invite the Burdiliak twins, don't expect me or Joseph to come!', stated Peter.) Suddenly, John realized, that it will be quite hard just to satisfy all the requests he got.

Task

You are given a description of the requests John got from his friends. Your task is to find a group of people such that if John invites the people in this group (and nobody else) to his party, all the requests he got will be satisfied. The requests are described in the following way:

· name is a request. This request is satisfied if and only if John invites name.

· -name is a request. This request is satisfied if and only if John doesn't invite name. (In both cases, name is a string of at most 20 lowercase letters without spaces.)

· If R1, …, Rk are requests, then (R1 & ... & Rk) is a request. This request is satisfied if and only if all requests R1, …, Rk are satisfied.

· If R1, …, Rk are requests, then (R1 | ... | Rk) is a request. This request is satisfied if and only if at least one of the requests R1, …, Rk is satisfied.

· If R1, R2 are requests, then (R1 => R2) is a request. This request is not satisfied if and only if R1 is satisfied and R2 is not satisfied.

Input data

You can find ten input files, called party1.in to party10.in on the web page. Each of the inputs is worth 10 points.

On the first line of the input file is the number of John's friends F, next F lines contain their names, one per line. On the next line is the number of requests N. Each of the following N lines contains one request.

Output data

For each file party*.in you have to produce the corresponding output file party*.out, containing one correct solution. The first line of the output file will be the number K of people John should invite. The following K lines should contain their names, one per line. You may assume that each of the input files has a (not necessarily unique) solution. If there are more possible solutions, you may output any of them.

Submits

Submit the files party*.out using the web interface in the same way you submit your programs for the other tasks.

Example

Input

 3

 veronica

 steve

 dick

 3

 (veronica => dick)

 (steve => -veronica)

 (steve & dick)

Output

 2

 steve

 dick

Solution

Introduction

From our point of view, the names of John's friends will be boolean variables. If a variable is true, it means that John should invite the corresponding person and vice versa. But then the requests John got are nothing else than logical formulas! Our task is to assign logical values to the variables so that each of the formulas will be true.

This is an important problem in theoretical computer science. It is so important, that in has even got a name – SAT. (This is just an abbreviation of ”satisfiability”.) In general, this problem is known to be NP-complete. Between other things this means, that there is no known algorithm, that solves SAT in polynomial time.

On the other hand, some of the input files were pretty large, and obviously no exponential-time algorithm had a chance to solve them in mere 5 hours. But then, this was an open data problem. If the backtracking algorithm doesn't do the trick, we will have to find something that may help us. Keep in mind that you may use any means necessary to produce the correct output. This especially means that sometimes it is much easier to edit something by hand than to code another 100 lines into your program.

Some words about logic

In the following paragraphs, letters A, B, ... will denote arbitrary logical formulas, not only variables. We will use - to denote the negation of any formula. This means, that we will be able to denote also some logical formulas that weren't allowed in the problem statement (for example -(A | B)). You have probably realized that the operator & was logical and (we will call it a conjunction of the variables), | was logical or (a disjunction) and => was an implication.

As a most basic fact note that the formulas (A => B), (-A | B) and (-B => -A) are equivalent. As a consequence, the formula (A => -A) is true iff A is false. The formula (A => (B => C)) is equivalent to ((A & B) => C).Therefore (A => (-A => B)) is always true. We will also need the de Morgan's rules:

· -(A1 & ... & Am) is equivalent to (-A1 | ... | -Am),
· -(A1 | ... | Am) is equivalent to (-A1 & ... & -Am).

From the facts mentioned above follows that the following formulas are equivalent:

· (A1 => (A2 => (... (Am => (B1 | ... | Bn))...)))

· ((A1 & ... & Am) => (B1 | ... | Bn))

· ((-(A1 & ... & Am)) | (B1 | ... | Bn))

· (-A1 | ... | -Am | B1 | ... | Bn)

We will call all variables and their negations by the common name literal. We say, that a formula is in the conjunctive normal form (CNF), if it is a conjunction of some logical formulas and each of these formulas is a disjunction of some literals. For example, the formula ((A | B) & (B | -C | C | C) & -D & (A | C)) is in CNF. It is not hard to prove, that each formula has an equivalent one, that is in CNF. The observations we made will help us later to rewrite some input files into equivalent ones, that are in CNF.

Inputs 1-4

Just parsing the input file and reading it correctly is quite a lot of work. But when we take a look at the input files, we may see that with almost no work we can make reading the input a lot easier.

First of all, note the names of the variables in inputs 2..10. They are: b, c, d, ..., i, j, ba, bb, ... Does it remind you of something? And when you see the sequence: 1, 2, 3, ..., 8, 9, 10, 11, ...? After we replace the letters a-j by the numbers 0-9, the names are just numbers from 1 to N. (Under Linux, this can be done by one command: “tr a-j 0-9”.) And how convenient, negation is denoted by the minus sign, so negations of the variables will be the numbers from -1 to -N. Input 1 differs, and the most efficient way to get rid of this difference is to solve it completely by hand.

Almost all formulas in the first four inputs are of the form (lit1 | lit2 | ... | litK), where each litX is a literal. This type of input is quite convenient, because it simply means that at least one of the literals in the formula has to be true. We simply rewrite the remaining few formulas into equivalent ones, having this form. As we don't need the characters (,), | anymore, we may delete them. If we regard the whole input file as one big conjunction of its lines, we see, that after rewriting the bad lines the input is in CNF.

Input files 1 to 4 were quite small, any (for input 4: any not completely brute-force) backtracking algorithm could find a solution in a reasonable amount of time. Loading the input and checking whether all the formulas are satisfied for some particular values of the variables becomes easy when the input file is in CNF.

Input 10

This was the biggest and ugliest of the input files, but definitely not the hardest one. When we take a closer look at the input file, we discover that its last lines are of the form (A => -A) and (-B => B). From the first one we know that A has to be false, from the second one B is true. In this way we know the values of all but the first three variables. The remaining three variables can be determined by looking at the first three lines of the input.

From the problem statement we know that a solution exists. What we found is the only possible solution, therefore it is the solution we seek. We don't have to verify, whether also the other formulas are true. (In fact they are, the input file was correct. How would you generate such an input file?)

Input 5-9

These inputs are way too big for an exponential-time algorithm to work in reasonable time. So let's take a closer look at the input files. We will find out that each (input 9: almost each) of the formulas contains only two literals forming an implication or a disjunction. How may this help us?

We may rewrite each formula into the form of an implication. For example (A | B) becomes (-A => B). Now we will build a directed graph. The vertices of our graph will be the literals, also the variables and their negations. The implications will form directed edges in our graph. The meaning of an edge is following: if its source vertex is true, then also its destination vertex has to be true.

From the formula above we would get the edge from -A to B.Note that the formula is also equivalent to (-B => A), and so we get also the edge from -B to A. In a similar way each formula in the input file creates two edges in our graph. Note that the graph is symmetric in the following way: if we swap variables and their negations and rotate the direction of the edges, we get the same graph.

[image: image10.jpg]
Our graph for the following formulas:

(A => -B), (B | -C), (B | C), (D => -B) and (C | D).

Now we want to label each of the vertices true or false, so that for each variable A exactly one of the vertices corresponding to A, -A is true. Also if some vertex v is true, then all vertices u such that there is an oriented v-u path have to be true.

Clearly if for some variable A the vertices corresponding to A and -A lie in the same strongly connected component, such labeling does not exist. (One of them has to be true, and if they are in the same component, this means that the other one has to be true too – a contradiction.) We will show that in all other cases a solution does exist.

Take some topologically maximal strongly connected component C. In other words, divide the graph into strongly connected components and take any component C such that no edge enters C. (Is it possible that there would be no such component? Why not?) We will label the vertices in C false. By the symmetry of the graph, the vertices corresponding to the negations of literals in C form a topologically minimal (e.g. such that no edge leaves it) strongly connected component C' in our graph. We label all the vertices in C' true. Clearly the labeling of vertices in C and C' is correct and it does not restrict the labeling of the rest of the graph in any way. Thus we may remove the components C, C' from the graph and label the rest of it recursively.

The program is a straigthforward implementation of the idea above. The size of the graph is linear in the size of the input. There is a well-known algorithm (based on depth-first search) to find the strongly connected components of a graph in time linear in its size. Then we apply topological sort to the resulting component graph and label its vertices in the way described above. Thus the solution is linear in the size of the input.

Sponsors

of the CEOI 2002

Main sponsors

[image: image11.png] [image: image12.jpg]
 SIS ERCIM

Other sponsors

[image: image13.png] [image: image14.png]
Tesla Stropkov Step Software
[image: image15.jpg]
Wonderland International

Results of the CEOI 2002

	place
	code
	name
	surname
	1
	2
	3
	4
	5
	6
	total
	medal

	1.
	SVK 1
	Peter
	Bella
	100
	100
	100
	100
	50
	40
	490
	golden

	2.-3.
	ROM 2
	Victor
	Costan
	100
	80
	100
	60
	20
	20
	380
	golden

	2.-3.
	ROM 1
	Daniel
	Dumitran
	10
	100
	100
	100
	20
	50
	380
	golden

	4.
	POL 1
	Bartosz
	Walczak
	0
	93
	100
	50
	100
	10
	353
	silver

	5.
	SVK 2
	Jozef
	Tvarožek
	100
	60
	20
	60
	30
	80
	350
	silver

	6.
	POL 2
	Karol
	Cwalina
	10
	86
	100
	20
	40
	80
	336
	silver

	7.
	CRO 1
	Ivan
	Sikirić
	0
	100
	100
	50
	50
	10
	310
	silver

	8.
	IRN 1
	Hamed
	Nejad
	40
	6
	100
	20
	50
	90
	306
	silver

	9.
	CZE 3
	Milan
	Straka
	20
	70
	100
	0
	30
	50
	270
	silver

	10.-11.
	HUN 1
	Gábor
	Pelládi
	30
	100
	10
	20
	50
	50
	260
	bronze

	10.-11.
	CRO 2
	Lovro
	Pužar
	20
	60
	100
	50
	20
	10
	260
	bronze

	12.-13.
	SVK 4
	Tomáš
	Dzetkulič
	10
	80
	100
	20
	30
	10
	250
	bronze

	12.-13.
	CZE 2
	Jan
	Kadlec
	20
	40
	40
	60
	50
	40
	250
	bronze

	14.-17.
	SVK 7
	Michal
	Malý
	10
	100
	30
	10
	50
	40
	240
	-

	14.-17.
	SVK 6
	Pavol
	Mravec
	20
	80
	10
	100
	20
	10
	240
	-

	14.-17.
	SVK 3
	Radovan
	Bauer
	30
	30
	100
	0
	40
	40
	240
	bronze

	14.-17.
	CRO 3
	Luka
	Kalinovčić
	0
	60
	100
	80
	0
	0
	240
	bronze

	18.
	IRN 4
	Mohammad
	Bateni
	0
	86
	30
	0
	90
	30
	236
	bronze

	19.
	POL 3
	Marcin
	Michalski
	10
	16
	100
	50
	30
	10
	216
	bronze

	20.
	CRO 4
	Marko
	Živković
	0
	100
	40
	10
	50
	10
	210
	bronze

	21.
	CZE 1
	Tomáš
	Gavenčiak
	30
	10
	20
	50
	50
	40
	200
	-

	22.-23.
	GER 3
	Julian
	Rüth
	10
	80
	30
	0
	50
	20
	190
	-

	22.-23.
	GER 1
	Benjamin
	Dittes
	20
	70
	40
	40
	0
	20
	190
	-

	24.
	HUN 4
	Gábor
	Simkó
	20
	70
	10
	10
	50
	0
	160
	-

	25.
	POL 4
	Piotr
	Stańczyk
	20
	14
	0
	70
	40
	10
	154
	-

	26.
	ROM 3
	Cosmin
	Raianu
	0
	0
	100
	10
	10
	20
	140
	-

	27.
	SVK 8
	Marek
	Tesař
	20
	16
	10
	0
	50
	30
	126
	-

	28.
	SVK 5
	Ján
	Mazák
	0
	53
	10
	0
	50
	10
	123
	-

	29.
	SLO 1
	Tomaž
	Gregorec
	20
	30
	0
	10
	50
	10
	120
	-

	30.
	HUN 2
	Gábor
	Bergmann
	20
	30
	0
	0
	50
	10
	110
	-

	31.
	SLO 2
	Jurij
	Kodre
	0
	16
	10
	0
	50
	30
	106
	-

	32.
	IRN 5
	Mohammad
	Moharrami
	0
	10
	0
	60
	20
	10
	100
	-

	33.-35.
	SLO 4
	Mitja
	Trampuš
	0
	0
	40
	0
	50
	0
	90
	-

	33.-35.
	ROM 4
	Markovits
	Andrei
	10
	30
	0
	30
	0
	20
	90
	-

	33.-35.
	IRN 2
	Siavosh
	Benabbas
	10
	40
	0
	0
	30
	10
	90
	-

	36.
	IRN 3
	Hassan
	Zakeri
	0
	30
	10
	0
	30
	10
	80
	-

	37.
	GER 2
	Alexander
	Hullmann
	0
	0
	10
	30
	20
	10
	70
	-

	38.-39.
	IRN 6
	Ashkan
	Nikseresht
	0
	0
	10
	0
	40
	10
	60
	-

	38.-39.
	HUN 3
	Tamás
	Fehér
	0
	0
	30
	30
	0
	0
	60
	-

	40.
	CZE 4
	Jiří
	Danihelka
	20
	16
	0
	0
	0
	10
	46
	-

	41.
	GER 4
	Melanie
	Schmidt
	0
	0
	10
	0
	0
	30
	40
	-

	42.
	SLO 3
	Luka
	Bradeško
	0
	0
	0
	10
	0
	10
	20
	-

