Analysis of REGS

BOI Scientific Committee

This task has three different solutions we are aware of:

e back-tracking,

e dynamic programming,

e greedy algorithm with elements of dynamic programming.
The complexity of solutions will be expressed in terms of

e N - number of registers,

e )M - number of nodes in the tree,

e K - maximum arity of functions.

The simplest way to solve this task is to have a function cost(X, @), which
given the number of available registers @ returns the total cost of computing
expression X. In its body all possible permutations px and sets 7x are gen-
erated. Then this function is applied recursively to the children of X and the
optimal cost of evaluating X is computed. The complexity of such approach is
very high and only very small input data can be solved with it.

The standard approach to improve such solution is to memorize computed
values of cost(X, @) for each pair of X and @. This gives complexity O(N - M -
K!-2K). This solution can be improved based on some observations about the
interplay of px and 7x. First, there exists an optimal solution where elements
of 7x constitute the prefix of px. In this case the mutual order of elements of
Tx according to px does not matter. These observations are summarized on
the following diagram:

TX

——f
T, T b Tir 415 - Ty
| S —

TX

Here Kx is the arity of function Fx, T; = px (i), and Tx denotes the comple-
ment of 7x. When using these observations the complexity of the solution is
O(N-M - K.

For the last solution we need to introduce the following definition:



Definition 1. For given expression X the perfect number of registers a(X) is
the minimum number of registers which allow computing X without unloading
intermediate values.

Our claim is that there exists an optimal solution such that for each T’ €
Tx \ {T}75|+1} when evaluating 7" the number of available registers is at least
a(T"). The proof is as follows: suppose 1" gets less than a(T") registers. In
this case moving T” to 7x will not increase the total cost. Another important
observation is that there exists an optimal solution where the elements of 7x
have decreasing values of «(-). This leads to the following solution:

1. Compute a(X) for each X. Additionally, precompute cost(X, a(X)) for
each X. This can be done bottom-up with complexity O(M - K -log K).

2. Compute the optimal cost of evaluating the expression using previously
defined function cost(X, Q). Computing cost(X, ) involves dynamic
programming on the sequence of children of X sorted according to the
value of a(-). For each X function cost(X, Q) is executed at most once
with @ = N. The total complexity of this step is O(M - K?).

This gives the total complexity O(M - K?-).
Altogether we get four gradually improving solutions having the following
complexities:

e impractically high,
e O(N-M - K!-2K),
e O(N M- K,

e O(M - K?).

This can serve as a basis for creating a set of tests that gives predetermined
amounts of points to different solutions.



