1.3 Solution

This is a logical puzzle about equalities (friends) and inequalities (enemies).

The story tells us that the relation “friend of” is symmetric: two gangsters are friends (of
each other). Then “friend of” can also be assumed reflexive: a gangster who is not a friend of
himself cannot be a member of any gang, and this leads to the minimum answer K = 0 which
we must try to improve. Ethics code 1 means that “friend of” is transitive. Hence “friend of” is
an equality relation. It follows that a gang is an equivalence class of this relation.

These classes can be maintained as the well-known Merge-Find data structure [1, Chap-
ter 21.3]. Initially each gangster is alone in his own class. Each fact F p ¢ merges the classes
for p and gq.

Such merge operations include not only those given explicitly as input but also those that
are given implicitly by ethics code 2 and the enemy facts E p ¢ given as input: if p and ¢ are
enemies, and ¢ and r are also enemies, then p and r are friends. Again, the story tells us that
“enemy of” is symmetric.

These merge operations are exactly those that must be performed to represent the input.
Hence the output K is the number of still distinct classes in the resulting data structure.
However, we must also satisfy each fact E p ¢: if p and ¢ end up in the same class, then the
input is inconsistent, since p and g should be both friends and enemies, and the story tells
us that these two relations are mutually exclusive. Hence the correct output is the minimum
answer K = 0 in this case.

A rough complexity analysis is as follows. The algorithm needs O(M) space: the Merge-Find
structure for the gangster, and a designated enemy for every gangster. This designated enemy
is used for maintaining the enemy information efficiently: by ethics code 2, all my enemies are
friends of each other, so it suffices to remember the first of my enemies, and merge all later
enemies with him. Initially nobody has a designated enemy.

The following algorithm needs O(M + Na(M)) time, where « is the inverse of Ackermann’s
function [1, Chapter 21.4].

First, it takes O(M) steps to initialize the data structures. Then it processes each of the N
facts, one by one, as follows.

A friend fact F p ¢ is processed by merging the classes of p and gq.

An enemy fact E p ¢ is in turn processed as follows. Consider p first. If p has no designated
enemy 7 yet, then make ¢ the designated enemy of p. Otherwise merge the classes of ¢ and 7.
The other gangster g is processed symmetrically.

This generates less than 2N merge operations into a Merge-Find structure of M elements,
and this takes O(Na(M)) total time.

Then we can check that each enemy fact E p ¢ is satisfied by checking that no gangster is
in the same class as his designated enemy (if any). If such a gangster does exist, then K = 0.

Otherwise the correct answer K is the number of different classes. It can be computed by
counting the number of those gangster nodes in the Merge-Find structure that are the roots of
the trees representing the classes.

In either case, K can be computed in O(M) steps.

Hence this problem can be solved with linear memory with respect to M and almost linear
time with respect to N, so their upper bounds could be large in order to separate the optimal
solutions from the slower ones.



References

[1] CorMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. Introduction to Algorithms,
second ed. The MIT Press, 2001.



