
SIAM J. COMPUT.
Vol. 2, No. 3, September 1973

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS*

J. E. HOPCROFTf AND R. E. TARJAN"

Abstract. An algorithm for dividing a graph into triconnected components is presented. When
implemented on a random access computer, the algorithm requires O(V + E) time and space to analyze
a graph with V vertices and E edges. The algorithm is both theoretically optimal to within a constant

factor and efficient in practice.
Key words, articulation point, connectivity, depth-first search, graph, separability, separation,

triconnectivity

Introduction. The connectivity properties of graphs form an important part
of graph theory. Efficient algorithms for determining some of these properties are
both theoretically interesting and useful in a variety ofapplications. This paper con-
siders the problem of dividing a graph into triconnected components. An algo-
rithm for this purpose is useful for analyzing electrical circuits [1], for determining
whether a graph is planar [2], and for determining whether two planar graphs are
isomorphic [-3]. An algorithm for planarity may be used in the design of printed
circuit boards; an algorithm for isomorphism of planar graphs may be used to
test structural isomorphism of chemical compounds [4].

One technique which has been used to solve connectivity problems is depth-
first search. In [5] and [6], depth-first search is applied to give efficient algorithms
for determining the biconnected components of an undirected graph and for
determining the strongly connected components of a directed graph. The method
has also been used in an efficient algorithm for planarity testing ([7], [8]) and in an
algorithm to find dominators in a flow graph [-9-]. This paper applies depth-first
search to the problem of finding the triconnected components of a graph. Old
methods for determining these components require O(V3) steps or more, if the
graph has V vertices ([1], 10]). The algorithm described here requires substantially
less time, and it may be shown to be optimal to within a constant factor, assuming
a suitable model of computation.

Four sections comprise the paper. The first section presents the necessary
definitions and lemmas from graph theory, and it describes depth-first search. The
second section intuitively explains the triconnectivity algorithm. The third
section describes preliminary calculations and a simple test to find the separation
pairs of a graph. The last section gives the heart of the triconnected components
algorithm, including proofs of its correctness and the derivation of time and space
bounds.

In deriving time bounds on algorithms, we assume a random-access computer
model. A formal definition of such a model may be found in [11]. Intuitively, any
logical, arithmetic, or control operation requires one step; all numbers must be
integers whose absolute values are O(V), if the problem graph has V vertices. (We

* Received by the editors July 27, 1972.
f Computer Science Department, Cornell University, Ithaca, New York 14850.
:I: This research was supported in part by the Hertz Foundation and the Office of Naval Research

under Grant N00014-67-A-0077-0021.

135

136 J. E. HOPCROFT AND R. E. TARJAN

use the following notation for specifying bounds: if f and g are functions of x, we
say f(x) is O(g(x)) if, for some constants kl and k2, If(x)[_<_ kl[g(x)[+ k2 for all x.)

1. Graphs, connectivity, and depth-first search. The definitions used in this
paper are more or less standard; see [12] and [13]. Triconnected components may
be defined in several ways, all more or less equivalent. The results below, which we
give without proof, follow from those of Saunders Maclaine 14]; our definitions
are modified somewhat to make them more suitable for computer applications.
Tutte [15] has also developed a theory of triconnected components his definitions
are equivalent to ours and to Maclaine’s. The theory is also a special case ofthe more
general theory of decomposing "clutters" into "chunks" due to Edmonds and
Cunningham I16].

A graph G (, g) consists of a set containing V vertices and a set g
containing E edges. If the edges are ordered pairs (v, w) of distinct vertices, the
graph is directed; v is called the tail and w the head of the edge. If the edges are
unordered pairs of distinct vertices, also denoted by (v, w), the graph is undirected.
If is a multiset, that is, if any edge may occur several times, then G is a multigraph.
If (v, w) is an edge of a multigraph G, vertices v and w are adjacent. Edge (v, w) is
incident to vertices v and w; v and w are incident to (v, w). If ’ is a set of edges in
G, (’) is the set of vertices incident to one or more of the edges in ’. If S is a
set of vertices in G, g(S) is the set of edges incident to at least one vertex in S.

If G is a multigraph, a path p:v = w in G is a sequence of vertices and edges
leading from v to w. A path is simple if all its vertices are distinct. A path p :v v is
a cycle if all its edges are distinct and the only vertex to occur twice on p is v, which
occurs exactly twice. Two cycles which are cyclic permutations of each other are

considered to be the same cycle. The undirected version of a directed multigraph is
the multigraph formed by converting each edge of the directed multigraph into
an undirected edge. An undirected multigraph is connected if every pairof vertices
v and w in G is connected by a path. If G (U, g) and G’= (C’, g’) are two
multigraphs such that ’ and d’___ d, then G’ is a subgraph of G. A
multigraph having exactly two vertices v, w and one or more edges (v, w) is called
a bond.

A (directed, rooted) tree T is a directed graph whose undirected version is
connected, having one vertex (called the root) which is the head of no edges, and
such that all vertices except the root are the head of exactly one edge. The relation
"(v, w) is an edge of T" is denoted by v -, w. The relation "there is a path from v to

w in T" is denoted by v -*-, w. If v w, v is the father of w and w is a son of v. If
v -*-, w, v is an ancestor of w and w is a descendant of v. The set of descendants of a
vertex v is denoted by D(v). Every vertex is an ancestor and a descendant of itself.
If G is a directed multigraph, a tree T is a spanning tree of G if T is a subgraph of
G and T contains all the vertices of G.

Let P be a directed multigraph consisting of two disjoint sets of edges, de-
noted by v ---, w and v --, w. Suppose P satisfies the following properties.

(i) The subgraph T containing the edges v w is a spanning tree of P.
(ii) If v -,w, then w v. That is, each edge not in the spanning tree T of P

connects a vertex with one of its ancestors in T.
Then P is called a palm tree. The edges v w are called the fronds of P.

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 137

A connected multigraph G is biconnected if for each triple of distinct vertices
v, w and a in V, there is a path p:v , w such that a is not on the path p. If there is
a distinct triple v, w, a such that a is on every path p :v , w, then a is called a
separation point (or an articulation point) of G. We may partition the edges of G so
that two edges are in the same block of the partition if and only if they belong to a
common cycle. Let Gi (V, Ei) where E is the set of edges in the ith block of the
partition, and V V(E). Then the following hold.

(i) Each G is biconnected.
(ii) No G is a proper subgraph of a biconnected subgraph of G.

(iii) Each vertex of G which is not an articulation point of G occurs exactly
once among the V and each articulation point occurs at least twice.

(iv) For each i, j, - j, V (3 V contains at most one vertex; furthermore, this
vertex (if any) is an articulation point.

The subgraphs G of G are called the biconnected components of G. The biconnected
components of G are unique.

Let {a, b) be a pair of vertices in a biconnected multigraph G. Suppose the
edges of G are divided into equivalence classes E E2, ..., E, such that two edges
which lie on a common path not containing any vertex of {a, b} except as an end-
point are in the same class. The classes Ei are called the separation classes of G with
respect to {a, b}. If there are at least two separation classes, then (a, b} is a separa-
tion pair of G unless (i) there are exactly two separation classes, and one class
consists of a single edge, or (ii) there are exactly three classes, each consisting of a
single edge.

If G is a biconnected multigraph such that no pair {a, b} is a separation pair
of G, then G is triconnected. Let {a, b) be a separation pair of G. Let the separation
classes of G with respect to {a,b} be E E2, E,. Let E’ [,.jki=l E and
E"= U,".-k+l Ei be such that IE’I >_- 2, IE"I _-> 2. Let G (V(E’),E’U {(a, b)}),
G2 (V(E"), E" [,.J {(a, b)}). The graphs G and G. are called split graphs of G
with respect to {a, b}. Replacing a multigraph G by two split graphs is called
splitting G. There may be many possible ways to split a graph, even with respect to
a fixed separation pair {a, b}. A splitting operation is denoted by s(a, b, i);i is a
label distinguishing this split operation from other splits. The new edges (a, b)
added to G and G2 are called virtual edges they are labeled to identify them with
the split. A virtual edge (a, b) associated with split s(a, b, i) will be denoted by
(a, b, i). If G is biconnected, then any split graph of G is also biconnected.

Suppose a multigraph G is split, the split graphs are split, and so on, until no
more splits are possible (each graph remaining is triconnected). The graphs
constructed in this way are called the split components of G. The split components
of a multigraph are not necessarily unique.

LEMMA 1. Let G (V, E) be a multigraph with]El >= 3. Let G l, G2, G be
the split components of G. Then the total number of edges in G1, Ge,..., G,, is
bounded by 3]E] 6.

Proof. The lemma is proved by induction on the number of edges of G. If G
has 3 edges, the lemma is immediate, because G cannot be split. Suppose the lemma
is true for graphs with n edges and suppose G has n edges. If G cannot be
split, the lemma is true for G. Suppose, on the other hand, that G can be split into
G’ and G", where G’ has k + edges and G" has n- k + edges for some

138 J. E. HOPCROFT AND R. E. TARJAN

2 <_ k =< n 2. By induction, the total number of edges in G1, G2, G must
be bounded by 3(k + 1) 6 + 3(n k + 1) 6 3n 6. Thus, by induction,
Lemma is true.

In order to get unique triconnected components, we must partially reassemble
the split components. Suppose G1 (V1,Ex) and G2 --(Vz,E2) are two split
components, both containing a virtual edge (a, b, i). Let

G (V U V2, (E {(a, b, i)}) I..J (E 2 {(a, b, i)})).
Then G is called a merge graph of G and G2; the merge operation will be de-
noted by m(a, b, i). Merging is the inverse of splitting;if we perform a sufficient
number of merges on the split components ofa multigraph, we recreate the original
multigraph.

The split components of a multigraph are of three types" triple bonds of the
form ({a, b}, {(a, b), (a, b), (a, b)}), triangles of the form ({a, b, c}, {(a, b), (a, c),
(b, c)}), and triconnected graphs. Let G be a multigraph whose split components
are a set of triple bonds M3, a set of triangles -, and a set of triconnected graphs a3.
Suppose the triple bonds 3 are merged as much as possible to give a set of bonds, and that the triangles - are merged as much as possible to give a set of polygons
@. Then the set of graphs 13 U a3 is the set of triconnected components of G.
If G is an arbitrary multigraph, the triconnected components of the biconnected
components of G are called the triconnected components of G.

LEMMA 2. The triconnected components of a graph G are unique.

Proof. See 14], 16] and 17].
Figure illustrates a biconnected graph G with several separation pairs.

Figure 2 gives the split components of G. The triconnected components of G are
formed by merging triangle (1, 8, 4) and triangle (4, 5, 8).

9

I0

FIG. 1. A biconnected graph G with separation pairs (1, 3), (1, 4), (1, 5), (4, 5), (1, 8), (4, 8) and (8, 12)

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 139

I// .8

,// /
(t"1 H ..,8 / /
.I II

-" I,./I

,
\

\\F E//v-/ L
,\ F \. I .I D// 5

r-\ -\; 4
B \ G 4 4//

13J B4 6

I 3

FG. 2. The split components of the graph G illustrated in Fig. I. Triconnected components are formed
by merging triangles (I, 8, 4) and (4, 5, 8)

Graph algorithms require a systematic way of exploring a multigraph. We
will use a method called depth-first search. To carry out a depth-first search of G,
start from some vertex s and choose an edge leading from s to follow. Traversing
the edge leads to a new vertex. Continue in this way, at each step selecting an
unexplored edge leading from the most recently reached vertex which still has
unexplored edges. If G is connected, each edge is traversed exactly once.

If G is undirected, a search of G imposes a direction on each edge of G given
by the direction in which the edge is traversed during the search. Thus the search
converts G into a directed multigraph G’.

LMA 3. Let P be te directed multigraph generated by a depth-first search ofa
connected undirected multigraph G. Then P is a palm tree.

Proof. See [5].
Depth-first search is important because the structure of paths in a palm

tree is very simple. To implement a depth-first search of a multigraph, we use
a simple recursive procedure which keeps a stack of the old vertices with possibly
unexplored edges. To represent a multigraph, we use a set of adjacency lists,
one for each vertex. If v is a vertex, adjacency list A(v) contains all w such that
(v, w) is an edge of G. These lists together comprise an adjacency structure for
G. If G is undirected, each edge (v, w) is represented twice, once in A(v) and once
in A(w). If G is directed, each edge is represented once.

140 J.E. HOPCROFT AND R. E. TARJAN

Below is a recursive procedure to carry out a depth-first search. The exact
search depends upon the order of edges in the adjacency lists. The procedure num-
bers the vertices from 1 to V in the order in which they are reached during the
search, in addition to identifying tree arcs and fronds. Reference [5] gives a proof
that the procedure is correct and requires O(V + E) time to execute. It is easy to
see that the vertices are numbered so that NUMBER(v)< NUMBER(w) if
v w in the generated spanning tree.

PROCEDURE 1.
begin comment routine for depth-first search of a multigraph G represented by

adjacency lists A(v). Variable n denotes the last number assigned to a
vertex;

integer n;
procedure DFS (, u); begin comment vertex u is the father of vertex v in the

spanning tree being constructed. The graph to be searched is
represented by a set of adjacency lists A(v);

n:= NUMBER (v) := n + 1;
a: comment dummy statement;

for w A(v) do begin
if NUMBER (w) 0 then begin

comment w is a new vertex;
mark (v, w) as a tree arc;
DFS (w, v);

b: comment dummy statement;
end
else if(NUMBER (w) < NUMBER(v)) and ((w 4= u) or -a FLAG (v))

then begin
comment the test is necessary to avoid exploring an edge

in both directions. FLAG (v) becomes false when the
entry in A(v) corresponding to tree arc (u, v) is
examined;

mark (v, w) as a frond;
c: comment dummy statement;

end;
if w u then FLAG (v) false;

end;
end;
n:=0;
for "= until V do begin

NUMBER (0 := O;
FLAG (0 true;

end;
comment the search starts at vertex s;
DFS (s, 0);

end;

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 141

The dummy statements a, b, c, will be replaced when DFS is used to calculate
other information about the graph. Figure 3 depicts the palm tree formed by
applying DFS to the graph in Fig. 1.

FIG. 3. Palm tree produced by a depth-first search ofgraph G illustrated in Fig.

2. An outline of the tricolmectivity algorithm. This section sketches the ideas
behind the triconnectivity algorithm. Later sections develop the detailed compo-
nents. The algorithm is based on an idea of Auslander, Parter, and Goldstein
([18], [19]) for testing the planarity of graphs. Auslander, Parter, and Goldstein’s
idea gives rise to an O(V) time algorithm for testing planarity, if depth-first search
is used to order the calculations ([7, [8). The same idea gives an O(V + E) time
algorithm for finding triconnected components.

Let G be an arbitrary biconnected multigraph. Suppose a cycle c is found in G.
When the cycle is deleted from G, certain connected pieces remain; they are
called segments. Auslander and Parter [18] show that G is planar if and only if

(i) any subgraph of G consisting of c plus a single segment is planar,
(ii) the segments may be combined consistently to give a planar embedding

of the entire graph.
An efficient planarity algorithm may be developed from this result ([7], [8]). A
similar result holds for the separation pairs of G, i.e., the following lemma.

142 J. E. HOPCROFT AND R. E. TARJAN

LEMMA 4. Let G be a biconnected multigraph and let c be a cycle in G. Let
S ..., S be the subgraphs ofG c such that el and e2 are edges ofS ifand only if
some path p in G contains both e and e2, and no vertex ofc lies between e and e2 in
p. The segments Si and the cycle c partition the edges ofG. Let {a, b} be a separation
pair of G such that (a, b) is not a multiple edge. Then thefollowing conclusions hold.

(i) Either a and b both lie on c, or a and b both lie in some segment Si.

(ii) Suppose a and b both lie on c. Let p and P2 be the two paths comprising c
which join a and b. Then either

(a) some segment Si with at least two edges has only a and b in common
with c, and some vertex v does not lie in S ({a, b} is called a "type 1"
separation pair), or

(b) no segment contains a vertex v 4: a, b in P and a vertex w 4: a, b in

P2, and P and P2 each contain a vertex besides a and b ({a, b} is
called a "type 2" separation pair).

(iii) Conversely, any pair {a, b} which satisfies (a) or (b) is a separation pair.
It is easy to prove this lemma a more technical version is proved in the next

section. Lemma 4 gives rise to an efficient recursive algorithm for finding split
components. We find a cycle in G and determine the segments formed when it is
deleted. We test each segment for separation pairs by applying the algorithm
recursively and we test the cycle for separation pairs by checking the criteria in
Lemma 4. Recursive application of the algorithm requires finding cycles in sub-
graphs of G formed by combining a segment Si and the initial cycle c.

We can make this algorithm very efficient by ordering the calculations using
depth-first search. Each recursive call on the algorithm requires that we find a cycle
in the piece of the graph to be tested for separation pairs. This cycle will consist of
a simple path of edges not in previously found cycles plus a simple path of edges in
old cycles. We use depth-first search to divide the graph into simple paths which
may be assembled into these cycles. The first cycle c will consist of a sequence of
tree arcs followed by one frond in P, the palm tree formed from G by depth-first
search. The numbering of vertices is such that the vertices are in order by number
along the cycle. Each segment will consist either of a single frond (v, w) or of a tree
arc (v, w) plus a subtree with root w, plus all fronds which lead from the subtree.
The search explores the segments in decreasing order of v and partitions each into
simple paths consisting of a sequence of tree arcs followed by one frond.

Finding paths actually requires two searches because the pathfinding search
must be carried out in a special order if it is to succeed, and certain preliminary
calculations are necessary. The section on finding separation pairs describes the
pathfinding process in detail and includes a version of Lemma 4 which charac-
terizes separation pairs in terms of the generated paths. The section on finding
split components indicates how these results may be used to determine the split
components of a biconnected multigraph in O(V + E) time.

To determine the triconnected components of an arbitrary multigraph, we
eliminate multiple edges by splitting them off, creating a set of bonds with three
edges. This requires O(V + E) time if implemented correctly. Then we find the
biconnected components of the resultant graph using the O(V + E) algorithm
described in [5 and 61. Next, the split components ofeach biconnected component
are found using the algorithm outlined above and presented in detail in the next

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 143

two sections. This gives us the split components of the entire graph. The total size
of the split components is O(V + E), by Lemma 1. Next we identify the set of
triple bonds 3 and the set of triangles -. For each of these two sets, we construct
an auxiliary graph S whose vertices are the elements of the set; two split compo-
nents are joined by an edge in an auxiliary graph if they have a common virtual
edge. The connected components of S(3) and S(-) correspond to the bonds and
polygons which are triconnected components of G. Finding these bonds and poly-
gons requires O(V + E) time. Below is an outline of the entire algorithm.

PROCEDURE 2.
procedure TRICONNECTIVITY (G); begin comment an outline of the tri-

connected components algorithm;
A: split off multiple edges of G to form a set of triple bonds and a

graph G’;
B: find biconnected components of G’;

for each biconnected component C of G’ do
C: find split components of C;
D: combine triple bonds and triangles into bonds and polygons by

finding connected components of corresponding auxiliary graphs;
end;

Steps A, B, and D all require O(V + E) time if correctly implemented. Im-
plementation of step B is described in I5] implementation of steps A and D is left
as an exercise. The hard step is step C, whose implementation is described in the
next two sections. Based on the results of these sections, the entire triconnectivity
algorithm has O(V + E) time and space bounds.

3. Finding separation pairs. Let G (U,) be a biconnected multigraph
with V vertices and E edges. The main problem in dividing G into its split com-
ponents lies in finding its separation pairs. This section gives a simple criterion,
based upon depth-first search, for identifying the separation pairs of a multigraph.
Two depth-first searches and some auxiliary calculations must be carried out.
These calculations form the first part of the split components algorithm, and are
outlined below. The definitions for the quantities LOWPT1, ND, etc., used in the
outline will be given subsequently.

Step 1. Perform a depth-first search on the multigraph G, converting G into
a palm tree P. Number the vertices of G in the order they are reached during the
search. Calculate LOWPT1 (v), LOWPT2 (v), ND (v), and FATHER (v) for each
vertex v in P.

Step 2. Construct an acceptable adjacency structure A for P by ordering the
edges in the adjacency structure according to the LOWPT1 and LOWPT2 values.

Step 3. Perform a depth-first search of P using the adjacency structure A.
Renumber the vertices of A from V to in the order they are last examined during
the search. Partition the edges into disjoint simple paths. Recalculate LOWPT1 (v)
and LOWPT2 (v) using the new vertex numbers. Calculate.A 1 (v), DEGREE (v), and
HIGHPT (v) for each vertex v.

144 J. E. HOPCROFT AND R. E. TARJAN

The details of these calculations appear below. From steps 1, 2 and 3, we
get enough information to rapidly determine the separation pairs of G. Lemma 13
gives a condition for this purpose.

Suppose G is explored in a depth-first manner, giving a palm tree P. Let the
vertices of P be numbered from to V so that v w in P implies v < w, if we
identify vertices by their number. For any vertex v in P, let FATHER (v) be the
father of v in the spanning tree of P. Let ND (v) be the number of descendants of v.
Let LOWPT1 (v) min ({v} 12 {wlv- w}). That is, LOWPT1 (v)is the lowest
vertex reachable from v by traversing zero or more tree arcs in P followed by at
most one frond. Let LOWPT2 (v)= min {v) ({wlv----,w}- {LOWPT1
(v)})]. That is, LOWPT2 (v) is the second lowest vertex reachable from v by travers-
ing zero or more treearcs followed by at most onefrond ofP, unless LOWPT1 (v) v.
In this case, LOWPT2 (v) v.

LEMMA 5. LOWPT1 (v) - v and LOWPT2 (v) - v in P.
Proof. LOWPT1 (v) v by definition. If LOWPT1 (v) v, the result is im-

mediate. If LOWPT1 (v) < v, there is a frond u LOWPT1 (v) such that v u.
Since u -LOWPT1 (v) is a frond, LOWPT1 (v) - u. Since P is a tree, v u and
LOWPT1 (v) u, either v LOWPT1 (v) or LOWPT1 (v)- v. But LOWPT1
(v) < v. Thus it must be the case that LOWPT1 (v) - v - u, and the lemma holds
for LOWPT1 (v). The proof is the same for LOWPT2 (v).

LEIMA 6. Suppose LOWPT1 (v) and LOWPT2 (v) are defined relative to some
numbering for which v w in P implies NUMBER (v) < NUMBER (w). Then
LOWPT1 (v) and LOWPT2 (v) identify unique vertices independent ofthe numbering
used.

Proof. LOWPT1 (v) always identifies an ancestor of vertex v. Furthermore,
LOWPTI (v) is the lowest numbered ancestor of v with a certain property relative
to the palm tree P. Since the order of the ancestors of v corresponds to the order of
their numbers, LOWPT1 (v) identifies a unique vertex independent of the number-
ing, i.e., the first ancestor of v along the path 1 v which has the desired property.
(Any satisfactory numbering assigns 1 to the root of P.) The proof is the same for
LOWPT2 (v).

The LOWPT values of a vertex v depend only on the LOWPT values of sons
of v and on the fronds leaving v;it is easy to see that if vertices are identified by
number, then

LOWPT1 (v)= min ({v} U {LOWPT1 (w)lv w} U {wlv --,w})
and

LOWPT2 (v)= min ({v} U (({LOWPT1 (w)lv w} U {LOWPT2 (w)lv--, w}

U {wlv --,w})- {LOWPT1 (v)})).

We also have ND (v)= 1 + v-w ND (w). We may calculate LOWPT values,
ND, and FATHER for all vertices in O(V + E) time by inserting the following
statements for the dummy statements a, b, c in DFS. Numbering the vertices in
the order they are reached during the search clearly guarantees that v - w implies

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 145

PROCEDURE 3.
comment additions to DFS for step
a: LOWPT1 (v):= LOWPT2 (v):= NUMBER (v);
ND (v) := l;

b: if LOWPT1 (w)< LOWPT1 (v)then begin
LOWPT2 (v) min (LOWPT (v), LOWPT2 (w))
LOWPT1 (v):= LOWPT1 (w);

end else if LOWPT1 (w) LOWPT1 (v) then
LOWPT2 (v) := min (LOWPT2 (v), LOWPT2 (w)};

else LOWPT2 (v) := min (LOWPT2 (v), LOWPT1 (w)};
ND (v) := ND (v) + ND (w);
FATHER (w):= v;

c: if NUMBER (w) < LOWPT1 (v)then begin
LOWPT2 (v):= LOWPT1 (v);
LOWPT1 (v):= NUMBER (w);

end else if NUMBER (w) > LOWPT1 (v) then
LOWPT2 (v) := min {LOWPT2 (v), NUMBER (w)};

It is easy to verify that DFS as modified above will compute LOWPT1,
LOWPT2, ND, and FATHER correctly in O(V + E) time. (See [8], [17].)
LOWPT1 may be used to test the biconnectivity of G, as described in [5]. The
following lemma is important.

LEMMA 7. If G is biconnected and v w, LOWPT1 (w) < v unless v 1, in
which case LOWPT1 (w) v 1. Also, LOWPT1 (1) 1.

Proof. See [5.
Let 4) be the mapping from the edges ofP into { 1, 2, ..., 2V + defined by
(i) if e= v- w, 4(e)= 2w+ 1.

(ii) if e v w and LOWPT2 (w) < v, b(e) 2LOWPT1 (w).
(iii) if e v w and LOWPT2 (w) _>_ v, b(e) 2LOWPT1 (w) + 1.
Let A be an adjacency structure for P. A is called acceptable if the edges e in

each adjacency list of A are ordered according to increasing value of b(e).
LEMMA 8. Let P be a palm tree of a biconnected graph G whose vertices are

numbered so that v w in P implies v < w. Then the acceptable adjacency structures

ofP are independent of the exact numbering scheme.
Proof. If v --, w in P, then by Lemma 5, LOWPT2 (w) is an ancestor of w.

By Lemma 6, LOWPT2 (w) is a fixed vertex independent of the numbering. Since
the order of the ancestors is independent of the numbering, the question as to
whether LOWPT2 (w) is less than v is independent of the numbering. Since G is
biconnected if v --, w in P, then LOWPT1 (w) __< v by Lemma 7. By Lemma -5,
LOWPT1 (w) is an ancestor of w. Since LOWPT1 (w) =< v, LOWPT1 (w) must be
an ancestor of v. By Lemma 6, the vertex corresponding to LOWPT1 (w) is indepen-
dent of the numbering scheme. Similarly, if v -,w, then by Lemma 3 and the
definition of a palm tree, w is an ancestor of v. But the order of the ancestors of v
is identical to the order of their numbers, and this order is independent of the
numbering. Thus the acceptable adjacency structures A for P depend only on P
and not on the exact numbering.

146 J. E. HOPCROFT AND R. E. TARJAN

In general, a palm tree P has many acceptable adjacency structures. Given a
satisfactory numbering of the vertices of P, we may easily construct an acceptable
adjacency structure A by using a radix sort with 2V + buckets. The following
procedure gives the sorting algorithm, which is step 2 of the calculations. All
vertices are identified by number. It is obvious that the sorting procedure requires
O(V + E) time.

PROCEDURE 4.
comment construction of ordered adjacency lists;
for := until 2* V + do BUCKET (i) := the empty list;
for (v, w) an edge of G do begin

compute q((v, w));
add (v, w) to BUCKET (b(v, w));

end;
for i:= until V do A(i) := the empty list;
fori’= luntil2*V+ ldo

for (v, w) BUCKET (i) do add w to end of A(v);

In step 3 of the calculations, we perform a depth-first search of P using the
acceptable adjacency structure A given by step 2. This search generates a set of
paths in the following manner" each time we traverse an edge we add it to the
path being built. Each time we traverse a frond, the frond becomes the last edge
of the current path. Thus each path consists of a sequence of tree arcs followed by
a single frond. Because of the ordering imposed on A, each path terminates at the
lowest possible vertex, the initial path is a cycle, and each path except the first is
simple and has only its initial and terminal vertex in common with previously
generated paths ([7], [8).

If p’s f is a generated path, we may form a cycle by adding the tree path
f s to p. The cycles formed in this way are the cycles generated by recursive
calls on the basic triconnectivity algorithm explained in the last section.

We need only minimal information about the paths. Let the vertices of P be
numbered so that v w implies v =< w. Let Al(v) be the first vertex in A(v). If
v -, w is the first frond explored in step 3 which terminates at w, let HIGHPT (w)

v. Let DEGREE (v) be the number of edges incident to vertex v. Step 3 numbers
the vertices from V to 1 in the order they are last examined during the search. It
is clear that this numbering guarantees that v < w if v - w. Step 3 also computes
LOWPT1 (v), HIGHPT (v), A1 (v), and DEGREE (v) with respect to new number-
ing. Procedure 5, based on DFS, will perform step 3 in O(V + E) time.

PROCEDURE 5.
step 3: begin comment routine to generate paths in a biconnected palm

tree with specially ordered adjacency lists A(v). Vertex s is a
global variable denoting the start vertex of the current path.s
is initialized to 0. Variable rn denotes the last number assigned
to a vertex;
procedure PATHFINDER (v); begin

X: NEWNUM (v) := m ND (v) + l;

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 147

Y

Z

for w A(v) do
if s 0 then begin

S :-- V;
start new path;

end;
add (v, w) to current path;
if v w then begin

PATHFINDER (w);
m:=m-1;

end else begin comment v w
if HIGHPT (NEWNUM (w)) 0 then

HIGHPT (NEWNUM(w)) :=
NEWNUM (v);

output current path;
s:=0;

end;
end;
s:-0;
m:=V;
for := until V do NEWNUM (i) := HIGHPT (i) := 0;
comment vertex is the start vertex of the search;
PATHFINDER (1);
for all vertices V do

compute A1 (v), DEGREE (v), LOWPT1 (v), and
LOWPT2 (v) using the new numbering;

end;

Step 3 numbers the vertices from V to in the order they are last reached
during the search. However, each vertex must actually be assigned a number the
first time it is reached, in order for the calculation ofHIGHPT to proceed correctly.
In order to accomplish this, variable is set equal to V when the search begins
(statement Z). The value of is decreased by one each time a new vertex is discovered
(statement Y). Thus when a vertex v is first reached, is equal to the number we
want to assign to v minus the number of vertices to be examined before v is examined
for the last time. But the vertices to be reached between the time v is first examined
and the time v is last examined are just the proper descendants of v. Thus if we
assign the number ND(v) + 1 to v when v is first examined (statement X),
the numbering Will be correct. The other calculations performed in step 3 are
straightforward and easy to implement. The palm tree for the graph G of Fig. is
illustrated in Fig. 4 along with LOWPT values and the set of paths generated by
step 3.

Let G be a biconnected multigraph on which steps 1, 2, and 3 have been per-
formed, giving a palm tree P and the sets of values defined above. Let A with ad-
jacency lists A(v) be the acceptable adjacency structure constructed in step 2. Let
the vertices of G be identified by the numbers assigned in step 3. We need one more
definition. If u --, v and v is the first entry in A(u), then v is called the first son of u.
(For each vertex v, Al(v), the first son of v if one exists, is calculated in step 3.)

148 J. E. HOPCROFT AND R. E. TARJAN

(8,9)

C F

-r (4,5)

FIG. 4. Ordered palm tree ofgraph G after pathfinding search with LOWPT1 and LOWPT2 values
in parentheses

Type pairs: (1, 4), (1, 5), (4, 5), (1, 8), (1, 3)
Type 2 pairs:(4, 8), (8, 12).
Paths: A:(1,2,3,13,1) B:(13,2) C:(3,4,5,8,9,10,12,1) D:(12,8) E:(12,9) F :(10,11, 8)

G:(ll,9) H:(8,1) I:(5,6,7,4) J:(7,5) K:(6,4) L:(4,1)

If Uo --, ul ---’ u,, and ui is a first son of ui_ for 1 <= <= n, then u, is called a

first descendant of Uo. The sequence of tree arcs Uo U -, u2 -,"" --, u, is
part of a path generated by step 3. The lemmas below give the properties we need
to determine the separation pairs of G.

LEMMA 9. Let A(u) be the adjacency list of vertex u. Let u v and u w be
tree arcs with v occurring before w in A(u). Then u < w < v.

Proof. Step 3 numbers the vertices from V to in the order they are last
examined in the search. If u --, v is explored before u --, w, v will be examined last
before w is examined last, and v will receive a higher number. Clearly u will be last
examined after both v and w are last examined, so u receives the smallest number
of the three vertices.

LEMMA 10. A is acceptable with respect to the numbering given by step 3.
Proof. The sorting in step 2 creates an acceptable adjacency structure for the

original numbering. By Lemma 9, u ---, v implies u < v and hence by Lemma 8, A
is acceptable for the new numbering.

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 149

LEMMA 11. If.v is a vertex and D(v) is the set of descendants of v, then D(v)
{xlv <=x <v +ND(v)}. If w is a first descendant of v, then D(v)-D(w)

-<_ x < w}.
Proof. Suppose we reverse all the adjacency lists A(v) and use them to specify

a depth-first search of P. Vertices will be examined for the first time in ascending
order from 1 to V, if vertices are identified by their step 3 number. Thus descendants
of v are assigned consecutive numbers from v to v + ND (v) 1. If w is a first
descendant of v, vertices in D(w) will be assigned numbers after all vertices in
D(v) D(w). Thus D(v) D(w) {xlv <= x < w}.

LEMMA 12. Let {a, b} be a separation pair in G with a < b. Then a - b in the
spanning tree T ofP.

Proof. Since a < b, a cannot be a descendant of b. Suppose b is not a descen-
dant of a. Let Ei, for 1 =< k, be the separation classes with respect to {a, b}.
Let S U D(a) D(b). The vertices S define a subtree in T containing neither
a nor b, so E(S) must be contained in some separation class, say El. Let c be any
son of a. E(D(c)) must be contained in some separation class. But since G is bicon-
nected, and a :A 1, LOWPT1 (c) < a, by Lemma 7. Thus some edge is incident to
a vertex in S and to a vertex in D(c). Thus E(D(c))

E A similar argument shows

that edges incident to any descendant of b are in El. But this means that E E,
and {a, b} cannot be a separation pair.

LEMMA 13. Suppose a < b. Then {a, b} is a separation pair of G if and only if
either (i), (ii), or (iii) below holds.

(i) There are distinct vertices r :/: a, b and s :/: a, b such that b r, LOWPT1
(r) a, LOWPT2 (r) >= b, and s is not a descendant of r. (The pair {a, b} is called a
"type 1" separation pair. The type 1 pairsfor the graph in Fig. 4 are (1, 3), (1, 4), (1, 5),
(4, 5) and (1, 8).)

(ii) There is a vertex r :/: b such that a r b; b is a first descendant of r
(i.e., a, r, and b lie on a common generated path) a :/: 1; every frond x y with
r <_x <bhasa<=y;andeveryfrondx- ywitha<y<bandbwxhas
LOWPT1 (w) >= a. ({a, b} is called a "type 2" separation pair. The type 2 pairs for
the graph in Fig. 4 are (4, 5) and (8, 12)).

(iii) (a, b) is a multiple edge ofG and G contains at least four edges.
Proof. The converse part of the lemma is easiest to prove. Suppose pair

{a, b} satisfies (i), (ii), or (iii). Let Ei for <= <= k be the separation classes of G
with respect to {a, b}. Suppose {a, b} satisfies (i). Then the edge (b, r) is contained
in some separation class, say El. Every tree arc with an endpoint in D(r) has the
other endpoint in D(r) 12 {a, b}. Also, since LOWPT1 (r)= a and LOWPT2 (r)
>= b, every frond with an endpoint in D(r) has the other endpoint in D(r) I.J {a, b}.
Thus E consists of all edges with an endpoint in D(r). No other edges are in El,
and the edges incident to vertex s must be in some other class, say E2. Since E,
and E2 each contain two or more edges, {a, b} is a separation pair.

Suppose {a, b} satisfies (ii). Let S D(r) D(b). All edges incident to a ver-
tex in S are in the same separation class, say E. Since b is a first descendant of r,
S {xlr <= x < b} by Lemma 1. Let b, b2,’.. b be the sons of b in the order
they occur in A(b). Let io min {ilLOWPT1 (b) >__ a}. By the ordering imposed
on A, < io implies LOWPT1 (b) < a, and >= 0 implies LOWPT1 (bi) >= a. By
(ii), every frond with tail in S has its head in S 12 {a}. Also by (ii), every frond with

150 J. E. HOPCROFT AND R. E. TARJAN

head in S has its tail in S U {b} U (U ->_o D(b)). Every edge with an endpoint in
D(b), i>__ io, has its other endpoint in S U {a, b} U D(b). Thus the class E
contains at least all edges with an endpoint in S, and at most all edges with an
endpoint in S U (U>__o D(b)). Since a # 1, the edges incident to the root of P
cannot be in E, and therefore {a, b} is a separation pair.

Now we must prove the direct part of the lemma. Suppose that {a,b} is
a separation pair with a < b. If (a, b) is a multiple edge of G, then it is clear that
{a, b} satisfies (iii). Thus suppose that (a, b) is not a multiple edge of G. By Lemma
12, a b. Let E, for __< __< k, be the separation classes of G with respect to
{a, b}. Let v be the son of a such that a--, v b, S D(v) D(b), and X V

D(a). (Either S or X or both may be empty.) E(S) and E(X) are each contained
in a separation class, say E(S)

_
E and E(X)

_
E2.

Let a # v be a son of a. If a has such a son, LOWPT1 (a) < a. This means that
E(D(aO) E2. Let Y X U (U D(aO). Let b, b2, b, be the sons of b in the
order they occur on the adjacency list of b. Let E(D(b)) be the set of edges with an
endpoint in D(b). The separation classes must be unions of the sets E(S), E(Y),
{(a, b)}, E(D(bl)), E(D(b2)), E(D(b,)).

If E(D(b)) Ej for some andj, then LOWPT1 (bi) a since G is biconnected,
and this means LOWPT1 (b) < b by Lemma 7. Also, LOWPT2 (b) >= b. Since
{a, b} is a separation pair, there must be a separation class other than Ej and
{(a, b)}. Thus there is a vertex s such that s va a, s 4: b, and s D(bi). This means that
{a, b} satisfies (i) where r is bi.

Suppose now that no E(D(b)) is by itself a separation class. Let io min
{i]LOWPT1 (bi) _>_ a}. If => io, then since G is biconnected, it must be the case
that LOWPT1 (b) < b, and theseparationclassesareE E(S) U ((-Ji>=o E(D(b)),
E2 E(Y) (U i<io E(D(bi))), Ea {(a, b)}. (E may be empty.) We have v va b
since a, b} is not a type 1 pair and a 4:1 since E is nonempty. If x -y is a frond
with v <_ x < b, then x 6 S, (x, y) 6 E, and a =< y. If x -.y is a frond with
a < y < b and b - b x, then ye S, (x,y) e E, and => io, which means that
LOWPT1 (bi) >= a. We must verify one more condition to show that (ii) holds,
i.e., that b is a first descendant of v. Since G is biconnected, LOWPT1 (v) < a. Thus
some frond with tail in D(v) has head less than a. By the ordering imposed on A
and the definition of a first descendant, there exists some frond x- -y with
x D(v) and y < a such that x is a first descendant of v. If b were not a first descen-
dant ofv, then x would be in S, and E andE2 could not be distinct separation classes.
Thus b is a first descendant of v, and (ii) holds with r v. This completes the proof
of the direct part of the lemma.

Lemma 13 and its proof are worth pondering carefully. The lemma gives
three easy-to-apply conditions for separation pairs. Conditions (i) and (ii) identify
the nontrivial separation pairs of the multigraph. Condition (iii) handles multiple
edges. Condition (i) requires that a simple test be performed on each tree arc of P.
Thus testing for type 1 pairs requires O(V) time. Testing for type 2 pairs is somewhat
harder, but may be done in O(V + E) time using another depth-first search. Let
{a, b} be a type 2 pair satisfying a r a, b, and io min {ilLOWPT2 (b,) >= a},
where b, b2, ..., b, are the sons of b in the order they occur in A(b). Then one
separation class with respect to {a,b} is E({x]r <= x < bo + ND (b/o)}- {b}).
This follows from the proof of Lemma 13. The new numbering, which satisfies the

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 151

somewhat strange condition in Lemma 9, thus makes it easy to determine the
separation classes and to divide the graph once a separation pair is found. An
algorithm for finding split components based on Lemma 13 is given in the next
section.

4. Finding split components. We find split components by examining the
generated paths in order and testing for separation pairs with Lemma 13. Separ-
ation pairs will be of several types. Multiple edges and type pairs are easy to
recognize. So are type 2 pairs {a, b}, where a v b and v has degree two.
Other type 2 pairs are somewhat harder to recognize. Let c be the first path gener-
ated (a cycle). The cycle consists of a set of tree arcs 1 /)1 /)2 -" Un
followed by a frond v, 1. The vertex numbering is such that < vl < < v,.
When c is removed, the graph falls into several connected pieces, called segments.
Each segment consists either of a single frond (vi, vt), or of a tree arc (vi, w) plus a
subtree with root w plus all fronds leading from the subtree. The order of path
generation is such that all paths in one segment are generated before paths in any
other segment, and the segments are explored in decreasing order of vi.

Suppose we repeat the pathfinding search, using it now to find split compo-
nents. We shall keep a stack of edges, adding edges to this stack as we back up
over them during the search. Each time we find a separation pair, we remove a
set of edges from the stack corresponding to a split component. We add a virtual
edge corresponding to the split both to the component and to the edge stack. We
also need to update various pieces of information, since the fathers of vertices and
the degrees of vertices may change when a graph is split. The complete path-
finding search will create a complete set of split components. Assembling the
split components to give the triconnected components is then a simple matter.

To identify type 2 pairs, we keep a stack (called TSTACK) of triples (h, a, b).
The pair {a, b} is a possible type 2 pair and h denotes the largest numbered vertex
in the corresponding split component. The pairs are in nested order on the stack;
that is, if v is the current vertex being examined by the pathfinding search, and
(hi, al, bl) (h2, a2, b2) (hk, ak, bk) are on TSTACK, then ak =< ak_ <
<= a2 al /)i b <__ b2 <- bk. Furthermore, all the a and b are vertices
on the cycle c.

We update TSTACK in the following ways.
1. Each time we traverse a new path p’s , f, we delete all triples (h

on top ofthe stack with a > f. Ifp has second vertex v - f, let x v + ND (v) 1.
Otherwise let x s. Let y max {htl triple (ht, at, bt) was deleted from TSTACK}.
If (hk, ak, bk) was the last triple deleted, we add (max (x, y), f, s) to the stack. It’no
triple was deleted, we add (x, f, s) to the stack.

2. When we back up over a tree arc v ---, vi/ with v : 1, we delete all
entries (ht, at, bt) on top of TSTACK satisfying HIGHPT (v) > ht. This test is
necessary to guarantee that entries not corresponding to type 2 pairs don’t
accumulate on TSTACK.

We use TSTACK to find separation pairs in the following way’whenever we
back up along a tree arc v vi+ during the pathfinding search, we examine the
top triple (h, al, bl) on TSTACK. If v - 1, a Vi, and a =/= FATHER (bi)
{al,bl} is a type 2 separation pair. If DEGREE (v+ 1) 2 and V+l has a son,

152 J.E. HOPCROFT AND R. E. TARJAN

then vi and the son of vi+ form a type 2 separation pair. We split off components
corresponding to type 2 pairs until these two conditions give us no more components.
(Simultaneously, we test for components corresponding to multiple edges and
split these off.) Then we apply Lemma 13 to test whether {v, LOWPT1 (v+ 1)} is
a type 1 pair, splitting off a component if necessary. (Again, we need to check for a
multiple-edge component.)

We handle the recursive part of the algorithm in the following way" traversing
a path p’s , f which starts on c means the search is entering a new segment.
Vertex f must be the lowest vertex in the segment by the ordering imposed on the
pathfinding search. After we update TSTACK as described above, if p contains
more than one edge we place an end-of-stack marker on TSTACK and continue
finding paths. This corresponds to a recursive call of the basic triconnectivity
algorithm. When we back up over the first edge of p, we delete entries from
TSTACK all the way down to the end-of-stack marker. This corresponds to
popping up from the recursion.

One more point needs explanation’the reason we use LOWPT2 as well as
LOWPT1 to construct A, the acceptable adjacency structure which determines the
pathfinding search order. This step is necessary so that all multiple edges are
handled correctly. Suppose v is a vertex, and wl, w2, "", wk are the sons of v such
that LOWPT1 (w) u. Further suppose that v --,u. Let the w be ordered as in
A(v). There is some io such that iN io=, LOWPT2(wi)< v and i> io
LOWPT2 (w)_> v. In A(v), u will appear after all the w with <-iN i0.

If > io, then {u, wi} is a type 1 separation pair; splitting off the corresponding
component produces a new (virtual) frond v --u. It is important that all the wi
with > io appear together in A(v) so that these virtual fronds may be located and
combined to give split components which are bonds.

Below is an ALGoL-like procedure to find split components based on the
ideas outlined above. The procedure is applicable to any biconnected multi-
graph for which steps 1, 2, and 3 described in the previous section have been carried
out.

PROCEDURE 6.
procedure SPLIT (G); begin

comment procedure to determine split components of G, a biconnected
multigraph on which steps 1, 2 and 3 have been carried out. G is repre-
sented by a set of properly ordered adjacency lists A(v). TSTACK
contains triples representing possible type 2 separation pairs. ESTACK
contains edges backed up over during search. Other variables have been
defined in the previous section;

procedure PATHSEARCH (v); begin
comment this recursive procedure repeats the pathfinding search, finding

separation pairs and splitting off components as it proceeds. It is
based on the material in this section and the last. Vertex v is the
current vertex in the depth-first search;

for w e A(v) do
if v - w then begin

A: if v --, w is first edge of a path then begin
y:=0;

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 153

while (h, a, b) on TSTACK has a > LOWPT1 (w) do begin
y "= max (y, h);
delete (h, a, b) from TSTACK;

end;
if no triples deleted from TSTACK then add

(w + ND (w) 1, LOWPT1 (w), v) to TSTACK
else if (h, a, b) last triple deleted then add

(max {y, w + ND (w) 1}, LOWPT1 (w), b) to
TSTACK;

add end-of-stack marker to TSTACK;
end;
PATHSEARCH (w);
add (v, w) to ESTACK;
while v4= and ((DEGREE (w)=2) and (A1 (w)>w) or

(h, a, b) on TSTACK satisfies (v a)) do begin
comment test for type 2 pairs;

if (h, a, b) on TSTACK has (a v) and
(FATHER (b) a)
then delete (h, a, b) from TSTACK;

else begin
if (DEGREE (w) 2) and (A1 (w) > w) do begin
j=j+l;

add top two edges (v, w) and (w, x) on ESTACK
to new component;

add (v, x, j) to new component;
if (y, z) on ESTACK has (y, z) (x, v) then begin

FLAG true;
delete (y, z) from ESTACK and save;

end;
end else if (h, a, b) on TSTACK satisfies v a and

a - FATHER (b) then begin
j=j + 1;
delete (h, a, b) from TSTACK;
while (x, y) on ESTACK has (a =< x =< h) and

(a =< y =< h)do
if (x, y) (a, b) then begin
FLAG TRUE;

delete (a, b) from TSTACK and save;
end else begin

delete (x, y) from ESTACK and add to current
component;

decrement DEGREE (x), DEGREE (y);
end
add (a, b, j) to new component;

end;
if FLAG then begin

FLAG false;

154 J.E. HOPCROFT AND R. E. TARJAN

j’=j+l;
add saved edge, (x, v, j 1), (x, v, j) to new

component;
decrement DEGREE (x), DEGREE (v);

end;
add (v, x, j) to ESTACK;
increment DEGREE (x), DEGREE (v);
FATHER (x) v;
if A (v) - x then A (v) x;
W ":X,

end;
comment test for a type pair;
if (LOWPT2 (w) => v) and ((LOWPT1 (w) 1) or

(FATHER (v) :/: 1)
or (w > 3))

then begin
j’=j+ 1;
while (x, y) on top of ESTACK has

(w<=x<w+ND(w))or
(w =< y < w + ND (w))

then begin
delete (x, y) from ESTACK;
add (x, y) to new component;
decrement DEGREE (x), DEGREE (y);

end;
add (v, LOWPT1 (w),j) to new component;
if A1 (v)= w then A1 (v)"= LOWPT1 (w);
comment test for multiple edge;
if (x, y) on top of ESTACK has

(x, y) (v, LOWPT1 (w))
then begin

j’=j+l;
add (x, y), (v, LOWPT1 (w), j 1),

(v, LOWPT1 (w),j) to new component;
decrement DEGREE (v),

DEGREE (LOWPT1 (w));
end;
if LOWPT1 (w) = FATHER (v) then begin add

(v, LOWPT1 (w), j) to ESTACK;
increment DEGREE (v),

DEGREE (LOWPT1 (w));
end else begin

j’=j+ 1;
add (v, LOWPT1 (w), j 1),

(v, LOWPT1 (w), j), tree arc
(LOWPT1 (w), v) to new component;

mark tree arc (LOWPT1 (w), v) as virtual edgej’;

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 155

end;
end;

C’ if v w is the first edge of a path then delete all entries on
TSTACK down to and including end-of-stack marker;

D" while (h, a, b) on ESTACK has HIGHPT (v) > h, do delete
(h, a, b) from TSTACK;

end else begin comment v- w;
F: if v- w is first (and last) edge of a path then begin

y 0;
while (h, a, b) on TSTACK has a > w do begin

y "= max (y, h);
delete (h, a, b) from TSTACK;

end;
if no triples deleted from TSTACK then add (v, w, v) to

TSTACK;
if (h, a, b) last triple deleted then add (y, w, b) to TSTACK;

end;
if w FATHER (v) then begin

j’=j+l;
add (v, w), (v, w, j), tree arc (w, v) to new component;
decrement DEGREE (v), DEGREE (w);
mark tree arc (w, v) as virtual edge j;

end else add (v, w) to ESTACK;
end; end;
j.=0;
FLAG false;
PATHSEARCH (1);

end;
LEMMA 14. SPLIT correctly divides a biconnected multigraph G into split

components.

Proof. We must prove two things" (i) if G is triconnected, SPLIT will not
split it, and (ii) if G is not triconnected, the algorithm will split it. Once we have
these two facts, we may prove the lemma by induction on the number of edges in
the graph. The tests for multiple edges, for type 1 separation pairs, and for degree-
two vertices are straightforward. (The type test (G in PATHSEARCH) includes
the condition (LOWPT1 (w) 4: 1) or (FATHER (v) 4= 1) or (w > 3) to make sure
that some vertex lies outside the corresponding split component.) These tests will
discover a separation pair of the correct type if one exists, and they will not report
a separation pair if one does not exist. Thus we must only show that the type 2
test works correctly on multigraphs with no degree-two vertices, multiple edges or
type separation pairs, and we will have verified (i) and (ii).

Suppose G is a biconnected multigraph with no degree-two vertices, multiple
edges, or type 2 separation pairs. Let us consider the type 2 test and the changing
contents of TSTACK as the search of G progresses. If (h al, b), ..., (hk, ak, b)
are the contents of TSTACK above the highest end-of-stack marker, and if v is
the vertex currently being examined during the search, then a _< a_ =< =< a
< v _<_ b <_... <= b. This follows by induction from an examination of the

156 .1. E. HOPCROFT AND R. E. TARJAN

possible changes that can be made in TSTACK (statements A, B, C, D, E, F in
PATHSEARCH). Furthermore, ak, ak_ v, b b all lie on the cycle corres-
ponding to the current recursive call of the basic triconnectivity algorithm.

Suppose (h, a, b) on TSTACK is found to satisfy the type 2 test when the
search returns along a tree arc v-, w. The test (B, E in PATHSEARCH) states
that a v, v va 1, and FATHER (b) - a. It follows that r A1 (a) - b satisfies
a r - b and that b is a first descendant of r (that is, a, r, and b lie on a common
generated path). If some frond x --,y with r __< x < b had a > y, the triple on
TSTACK corresponding to (h, a, b) would have been deleted from TSTACK when
the frond was explored (A or F in PATHSEARCH). Similarly, if some frond
x --,y with a < y < b and b-, w x had LOWPT1 (w) < a, the triple on
TSTACK corresponding to (h, a, b) would have been deleted by the HIGHPT test
when vertex y was examined (D in PATHSEARCH). It follows that {a, b} is a

type 2 separation pair by Lemma 13.
Conversely, suppose G has a type 2 pair {a, b}. Let bl, .’., b, be the sons of b

in the order they occur in A(b). Let i0 min {i[LOWPT1 (bi) > a}. If io exists,
then (bio + ND (bio), LOWPT1 (b), b) will be placed on TSTACK when tree arc
b ---, b is explored. This triple may be deleted from TSTACK, but it will always be
replaced by a triple of the form (h, x, b), with LOWPT1 (b) > x > a. Eventually
such a triple will satisfy the type 2 test, unless some other type 2 pair is found first.
If io does not exist, let (i, j) be the first edge traversed after b is reached such that
a < and j =< b. If j, then (i,j, i) will be placed on TSTACK, possibly modi-
fied, and eventually selected as a type 2 pair, unless some other type 2 pair is
found first. If --. j, then (j + ND (j), LOWPT1 (j), i) will be placed on TSTACK,
possibly modified, and eventually selected as a type 2 pair unless some other type 2
pair is found first. Thus if some type 2 pair exists, at least one type 2 pair will be
found by the algorithm. It follows that the type 2 test works correctly, and the
algorithm splits a multigraph if and only if a separation pair exists.

The lemma follows by induction on the number of edges in G. Suppose the
lemma is true for graphs with fewer than k edges. Let G have k edges. If G cannot
be split, the algorithm works correctly on G by the argument above. If G can be
split, it will be split. Consider the first split performed by the algorithm, producing
split graphs G1 and G2. The behavior of the algorithm on G is a composite of its
behavior on G1 and G2. Since the algorithm splits G1 and G2 correctly by the
induction hypothesis, it must split G correctly. The lemma follows by induction.
Figure 5 gives the contents of ESTACK and TSTACK when the first separation
pair (8, 12) in the graph of Fig. is detected.

LEMMA 15. The triconnected components algorithm processes a graph G with
V vertices and E edges in O(V + E) time.

Proof. The number of edges in a set of split components of G is bounded by
3E- 6, by Lemma 1. All steps except finding split components thus require
O(V+ E) time, by the results of the last two sections. Consider execution of
algorithm SPLIT. Each edge is placed on ESTACK once and deleted once. The
depth-first search itself requires O(V + E) time, including the various tests. The
number of triples added to TSTACK is O(V + E). Each triple may only be modi-
fied if it is on top of the stack. Thus the time necessary to maintain TSTACK is
also O(V + E) and SPLIT requires O(V + E) time.

DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 157

(12,8,12)
(12,8,12)
EOS

(3,,)
TSTACK

8,9
9,10

I0,11
9,11
8,11
10,12
9,12
8,12
1,17_.
5,13
2,13
1,13

ESTACK

First component.
Algorithm adds

virtual edge (8,12),

FIG. 5. Contents ofTSTACK and ESTACK when first separation pair {8, 12} is detected

This completes our presentation of an O(V + E) triconnected components
algorithm. This algorithm may be used in the construction of an O(V log V) algo-
rithm for testing isomorphism of planar graphs 3]. The algorithm is not only
theoretically optimal (to within a constant factor) but practically useful. The split
components algorithm has been implemented in ALGOL W and run on an IBM
360/65 computer. Experiments show that the algorithm can handle graphs with
around 1000 edges in less than 10 seconds.

REFERENCES

[1] A. ARIOSHI, I. SHIRIKAWA, AND O. HIOSHI, Decomposition ofa graph into compactly connected
two-terminal subgraphs, IEEE Trans. Circuit Theory., 18 (1971), pp. 430-435.

[2] J. Buqo, K. STWIGLrrZ, AqD L. WEINBEtG, A new planarity test based on 3-connectivity, Ibid.,
17 (1970), pp. 197-206.

[31 J. HO’COFT ANt) R. TARJAY, Isomorphism ofplanar graphs, Complexity of Computer Computa-
tions, Plenum Press, New York, 1972, pp. 143-150.

[4] J. LEDERGERG, DENDRAL-64: A system for computer construction, enumeration, and notation of
organic molecules as tree structures and cyclic graphs H: Topology of cyclic graphs, Interim
Report on the National Aeronautics and Space Administration, Grants 681-60, NASA CR
68898, STAR N-66-14074, 1965.

[5] R. TAJAy, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-159.
[6] J. HOPCROFT AND R. TARJAN, Efficient algorithms for graph manipulation, Comm. ACM., to

appear.
[73 R. TARJAN, An efficient planarity algorithm, Rep. STAN-CS-244-71, Computer Science Dept.,

Stanford Univ., Stanford, Calif., 1971.
[8] J. HOt’CROFT AND R. TARJAN, Efficient planarity testing, Tech. Rep. 73-165, Dept. of Computer

Science, Cornell University, Ithaca, New York, 1973.
[9] R. TARJAN, Finding dominators in directed graphs, Tech. Rep. 73-163, Dept. of Computer Science,

Cornell Univ., Ithaca, New York, 1973.
[10] D. J. KLEITMAN, Methods for investigating the connectivity of large graphs, IEEE Trans. Circuit

Theory., 16 (1969), pp. 232-233.
[11] S. A. Coo, Linear-time simulation ofdeterministic two-waypushdown automata, IFIP Congress 71

Foundations of Information Processing, Ljubljana, Yugoslavia, North Holland Pub. Co.,
Amsterdam, pp. 174-179.

[12] G. BUSACKER AND T. L. SAAT, Finite Graphs and Networks." An Introduction with Applications,
McGraw-Hill, New York, 1965.

[13] F. HARAR’’, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[14] S. MACMYE, A structural characterization of planar combinatorial graphs, Duke Math. J.,

3 (1937), pp. 460-472.

158 J. E. HOPCROFT AND R. E. TARJAN

[15] W. T. TUTTE, Connectivity in Graphs, Univ. of Toronto Press, 1966.

[16] J. EDMONDS AND W. CUNNINGHAM, private communication, 1972.
[17-j R. TARJAN AND J. HOPCROFT, Finding the triconnected components ofa graph, Tech. Rep. 72-140,

Dept. of Computer Science, Cornell University, Ithaca, New York, 1972.
[18] L. AUSLANDER AND S. V. PARTER, On imbedding graphs in the plane, J. Math. Mech., 10 (1961),

pp. 517-523.
19] A.J. GOLDSTEIN, An efficient and constructive algorithmfor testing whether a graph can be embedded

in a plane, Graph and Combinatorics Conference, Office of Naval Research Logistics Proj.,
Contract NONR 1858-(21), Dept. of Math., Princeton Univ., 1963, 2 unnumbered pp.

