Cut Tree Algorithms

Andrew V. Goldberg*

NEC Research Institute
4 Independence Way
Princeton, NJ 08540

avg@research.nj.nec.com

Abstract

This is an experimental study of algorithms for the
cut tree problem. We study the Gomory-Hu and
Gusfield’s algorithms as well as heuristics aimed to make
the former algorithm faster. We develop an efficient
implementation of the Gomory-Hu algorithm. We also
develop problem families for testing cut tree algorithms.
In our tests, the Gomory-Hu algorithm with a right
combination of heuristics was significantly more robust
than Gusfield’s algorithm.

1 Introduction

Cut trees, introduced by Gomory and Hu [10] and also
known as Gomory-Hu trees, represent the structure of
all s-t cuts of undirected graphs in a compact way. The
cut trees have many applications.

All known algorithms for building cut trees use a
minimum s-t cut subroutine. The most efficient cur-
rently known way to find a minimum s-¢ cut is using
a maximum flow algorithm. See [8] for the currently
known maximum flow bounds. Gomory and Hu [10]
showed how to solve the tree problem using n — 1* min-
imum cut computations and graph contractions. Gus-
field [12] proposed an algorithm that does not use graph
contraction; all n—1 minimum s-t cut computations are
performed on the input graph. Gusfield’s algorithm is
very simple and can be implemented by adding a few
lines to a maximum flow code.

Computational performance of algorithms for
closely related problems, the maximum flow problem
and the (global, e.g. over all s, pairs) minimum
cut problem has been studied extensively; see e.g.
[1, 4, 5, 7, 18] for computational studies of the former
problem and [3, 15, 16, 17, 19] for the latter. Both prob-

~ *Current address: InterTrust STAR Laboratory, 460 Oakmead
Parkway, Sunnyvale, CA 94086.

1We denote the number of vertices and edges in the input graph
by n and m, respectively.

Kostas Tsioutsiouliklis

Computer Science Department
Princeton University
Princeton, NJ 08540
kt@cs.princeton.edu

lems can be solved well in practice: most problems that
fit in RAM of a modern computer can be solved in a few
minutes. The cut tree problem appears more difficult,
for one needs to solve n — 1 minimum s-t cut problems.

Therefore, computational performance of cut tree
algorithms is of great interest. Implementations of cut
tree algorithms exist — for example, as subroutines of
TSP codes [2, 11]. However, we are not aware of any
published computational studies of cut tree algorithms.
In this paper we undertake such a study.

We describe how to implement Gomory-Hu and
Gusfield’s algorithms efficiently (which is nontrivial for
the former). We also introduce and study heuristics
aimed at improved computational performance of these
algorithms. Our computational experiments lead to a
good understanding of practical performance of the cut
tree algorithms.

2 Definitions and Notation

The input to the cut tree problem is an undirected graph
G = (V,E) and a capacity function ¢ : £ = R*. We
denote |V| = n and |E| = m. A cut (X,Y) in G is
a partitioning of V into two nonempty sets. We say
that an edge crosses the cut if its two endpoints are on
different sides of the cut. Capacity of a cut is the sum
of capacities of edges crossing the cut.

We distinguish between wvertices and nodes. We
refer to the elements of V' as vertices. Nodes correspond
to subsets of vertices. (A node can be a single-
element subset.) We need the distinction because we
use contraction operations.

For s,t € V, an s-t cut is a cut such that s and ¢
are on different sides of it. A minimum s-t cutis an s-t
cut of minimum capacity. A (global) minimum cut is a
minimum s-t cut over all s,t pairs.

A cut tree is a weighted tree T on V with the
following property. For every pair of distinct vertices
s and t, let e be a minimum weight edge on the unique
path from s to t in T. Deleting e from T separates T

into two connected components, X and Y. Then (X,Y)
is a minimum s-t cut. Note that T is not a subgraph of
G, i.e. edges of T' do not need to be in E.

3 Gomory-Hu Algorithm

In this section we outline the Gomory-Hu algorithm and
its efficient implementation. We also discuss heuristics
that may improve algorithm’s performance in practice.
We provide only the details of the algorithm needed to
describe the implementation and the heuristics. For a
complete description, see e.g. [6, 10, 14].

The Gomory-Hu algorithm is recursive. It distin-
guishes between two kinds of nodes: original and con-
tracted. A vertex of the input graph is an original
node. If there are more than one original nodes, the
algorithm picks two, s and ¢, finds a minimum s-t cut
(S,T), and forms two graphs, G4 by contracting S into
a contracted node, and G; by contracting T". Then it
recursively builds cut trees in G5 and G and puts these
trees together. One can see that the algorithm main-
tains the following invariant: a trivial cut around a
contracted node is a minimum cut between this node
and some other node in the graph. If there is only one
original node, the algorithm has enough information to
construct a cut tree; in this case the recursion bottoms
out.

Because of the contraction operations, efficient im-
plementation of the Gomory-Hu algorithm is nontrivial.
(This was the main motivation behind Gusfield’s algo-
rithm.) A naive implementation of contractions allo-
cates new memory for a contracted node and its edges.
This may result in Q(n?) memory allocation even for
a sparse graph. We describe an implementation that
uses O(logn) extra node records and O(n) extra edge
records. These records are allocated as a block at the
beginning of the computation, avoiding expensive allo-
cation of small pieces of memory throughout the com-
putation and improving locality of reference.

We maintain the following information at every step
of the computation. Recall that the computation is
recursive. For each recursive call currently in progress,
we maintain information about the cut computed at
this level and the graphs obtained by contracting one
of the cut sides. When the first recursive call returns,
we mark node and edge records of the corresponding
subgraph as free. We also maintain information about
the contracted nodes (on which side of the cut they are
each time), since this determines the structure of the
final cut tree. Finally, we maintain a data structure
that builds the cut tree according to the cuts found so
far.

Our implementation first recurses on the subgraph
with a smaller number of nodes and uses fewer addi-

tional nodes and edges because of this. We analyze these
numbers next.

For the second recursive call, we can reuse the
nodes and the edges of the already processed subgraph
and use no additional storage. The number of extra
nodes we need is determined by the longest sequence
of left branches in a root-to-leaf path in the recursion
tree (corresponding to the first recursive calls), which
is [logy] because we recurse on the smaller subgraph
first. Similarly, the number of extra edges needed is
determined by the maximum, over all root-to-leaf paths,
of the sum of sizes of subproblems corresponding to left
branches. The maximum is bounded by n.

Note that our implementation destroys the input
graph. If this is not desirable, one can make a copy of
the graph before running the algorithm. All our codes
are superlinear, and the time to make the copy would
be negligible except for small graphs.

When implemented as described above, direct over-
head of contraction operations is small; contraction usu-
ally costs less than the corresponding minimum cut
computation. However, there is also indirect cost: lo-
cality of the input graph representation suffers because
of the contractions, reducing the number of cache hits
somewhat.

At high level, two major factors determine the
computational performance of the algorithm. The first
one is the balance (e.g., the ratio of the number of nodes)
of the cuts found by the algorithm. In the worst case,
one side of every such cut contains one node. In the best
case, the cuts are balanced. In the latter case, assuming
that minimum cut computations are superlinear, the
first one dominates the total running time. The second
factor is the hardness of the minimum cut subproblems.
Heuristics that lead to more balanced cuts or simpler
subproblems improve the algorithm performance.

The balance heuristic aims at keeping the cuts
balanced. Assume we have at least four original nodes.
First we compute all minimum cuts between two such
nodes, a and b, and take the most balanced cut. If the
cut is sufficiently balanced (e.g. the ratio of the number
of nodes of the larger and the smaller parts does not
exceed a threshold), we proceed. Otherwise, we pick
two nodes, ¢ and d, on the bigger side of the cut. We
compute all minimum cuts between ¢ and d, take the
most balanced one, compare it to the most balanced
minimum cut between a and b, and choose the best.
We may have to compute twice as many cuts, so the
worst-case loss is about a factor of two. The best-case
gain is much larger.

We can also use both cuts, since according to
Gomory-Hu [10], if the cuts are crossing, we can always
find noncrossing cuts. We use this technique, although

it usually does not lead to a big speedup: most often one
of the cuts is quite unbalanced, and the computation to
find noncrossing cuts is relatively expensive.

The mincut heuristic makes use of the Hao-Orlin al-
gorithm [13] for finding global mincuts. This algorithm
uses the push-relabel method to find a minimum cut
between the source and the sink. Then it contracts the
source and the sink, and selects a new sink. Hao and
Orlin show that with a careful implementation of many
push-relabel algorithms, the asymptotic worst-case time
bound for these n — 1 minimum s-¢ cut computations is
the same as that for one minimum s-t cut computation
of the underlying algorithm.

Note that the first cut found by the Hao-Orlin
algorithm is a minimum s-¢ cut in the input graph. Also,
the algorithm finds a minimum cut, which is a minimum
s-t cut for any s, t on the opposite sides of it. We prove
a lemma that allows to use several cuts found by the
algorithm in the cut tree construction.

The Hao-Orlin algorithm has the following prop-
erty. Let s be the initial source and let S be the set of
vertices contracted into the source at some point of an
execution of the algorithm. Let A\ be the capacity of the
smallest cut found up to this point (initially A = o).
Then for any x € S, the capacity of a minimum s-z cut
is at least .

LEMMA 3.1. Suppose that t is the next sink and the
minimum S-t cut has value N < X. Then this cut is
also a minimum cut between s and t in G.

Proof. Suppose that there is a smaller cut between s
and t. This cut cannot separate s from a vertex z € S
because s and x are A-connected. Thus the cut separates
S and t. This contradicts the definition of \’.

The mincut heuristic uses the above lemma and
finds several minimum s-t cuts with one Hao-Orlin
computation. This number is usually small, so we use
this heuristic together with the balance heuristic to
obtain one or two cuts — the most balanced ones.

The source selection heuristic is aimed at both
making minimum cut computations simpler and making
balanced cuts more likely. This heuristic uses the fact
that any original node can be chosen as the source for
the next minimum cut computation. After choosing a
sink for the computation, we choose an original node
that is furthest away from the sink as the source. (All
distances are with respect to a unit length function.)
Note that we use an implementation of the push-relabel
method [9] based on that of [4]. This implementation
computes distances to the sink during the initialization,
so the source selection heuristic adds essentially no
overhead.

As part of the source selection heuristic, we choose
the source/sink to be the heaviest nodes of the graph
(e.g. nodes with the highest total capacity of adjacent
edges), since this sometimes leads to more balanced
cuts.

3.1 Owur ImplementationsAfter studying different
ways of incorporating heuristics into the Gomory-Hu
algorithm, we report on two codes. The GH code
uses no heuristics and picks the next source/sink pair
at random. The GHS code uses the source selection
heuristic. The GHG code uses the mincut heuristic in
the following way: Initially, it picks the two heaviest
nodes as the source and the sink of the Hao-Orlin
algorithm.? As soon as it finds a cut in the decreasing
sequence which is more balanced than the first cut
found, it splits the graph according to both this cut
and the first one. Our experience shows that using the
mincut heuristic is the best way to find balanced cuts
at low expense.

4 Gusfield’s Algorithm

Like the Gomory-Hu algorithm, Gusfield’s algo-
rithm [12] consists of n — 1 iterations of a minimum
cut subroutine and bookkeeping that puts the result-
ing cuts together. Gusfield’s algorithm, however, does
not contract vertices and works with the original graph,
making it easy to implement. At each of the n—1 itera-
tions of Gusfield’s algorithm, a different vertex is chosen
as the source. This choice determines the sink.

Low-level operations of this algorithm are efficient
because of its simplicity and the fact that the algorithm
takes advantage of locality of the input graph represen-
tation. However, all minimum cut subproblems are as
big as the original graph. Furthermore, the algorithm
has less flexibility for adding heuristics. The only flex-
ibility is the choice of the next source. We choose the
next source at random. We refer to the resulting imple-
mentation as GUS.

5 Experimental Setup

For our computations, we used a SUN Sparc Ultra-2
workstation with 256 MB memory running SunOS 5.5.1.
All the code is written in C and compiled with ’gcc’
and optimization option -O4. Our implementations are
written in the same style and are derived from the Hao-
Orlin algorithm implementation of [3]. We attempted
to make all implementations as efficient as possible.
For our tests we use problem families from the
previous minimum cut studies [3, 16, 17, 19], but instead
of finding a minimum cut of a graph, we build a cut

ZA random choice is much less robust.

tree. We omit the description of the problem families.
Detailed descriptions appear in [16]. We do not report
on PR2-PRA4 problem families because the results are
very close to those for the PR1 family, and on REG3-
REG4 families because the results are very close to
those for the REG1 and REG2 families. We also use
two new problem families produced by two generators,
PATHGEN and TREEGEN, described below. A summary
of the problem families we use appears in Table 2.

The PATHGEN generator works as follows. Given a
parameter k, it builds a path of k—1 “heavy” edges and
connects the remaining n—k vertices to the path vertices
by heavy edges, at random. Then it adds “light” edges
at random to achieve the desired number of arcs and to
make the minimum cut problems more difficult. This
generator takes the following parameters:

e 1, the number of vertices;

e d, the density of the graph as a percentage;
e k, the path length;

e P the path arc capacity parameter;

e S, the seed.

Heavy edge capacities are chosen uniformly at random
from the interval [1,...,100- P] and light edge capacities
from [1,...,100].

The value of k determines the path shape. For
example, if K = n then we get one heavy path through
all the nodes; if K = 1, then the graph is a star. We use
PATHGEN to produce the PATH problem family. We use
n = 2,000, d = 10, P = 1,000, and k changing from 1
to 2,000.

The TREEGEN generator works as follows. Given a
parameter k, it builds a tree by connecting vertex i, 2 <
i <mn, to a randomly chosen vertex in [1, min(i — 1, k)].
The tree edges are heavy. Then it adds “light” edges
at random to achieve the desired number of arcs and to
make the minimum cut problems more difficult. This
generator takes the following parameters:

e 1, the number of vertices;

e d, the density of the graph as a percentage;
e k, the shape parameter mentioned above;

e P the path arc capacity parameter;

e S, the seed.

The generator chooses heavy edge capacities uniformly
at random from the interval [1,...,100 - P] and light
edge capacities from [1,...,100].

| | Gus

BIKEWHE || O
CcYC1
DBLCYC || &
IRREG1
NOI1
NOI12 | ®
NOI3
NOI4
NOI5
NOI6
PATH
PR1

PR5

PR6

PR7

PR8
REG1
REG2
TREE
TSP
WHE O+
Table 1: Summary of algorithm performance. () means

good, (O means fair, Q) means poor, and e means bad.
+ marks the fastest code(s).

| GH | GHs | GHg |
O+
O
O+
O+

|

+

+
OO * |IO|O|OOO|OIO)] * |OIBOO|OIOIO0OIOIOIO

FIF

+

+
OlO0|00|O|0O|OIOIO|OIOIOOIO

Ol0|0|0|0|O[OO|OIO|0|OIOI0|OIOIOIOIOIOIO

OR¥ROOOBBIOORO* IO

The value of k determines the shape of the tree. For
example, if K = 1 then the tree is a star. If k =n — 1,
then a tree is obtained by connecting each vertex except
the first one to a randomly chosen preceding vertex.

We use TREEGEN to produce the TREE problem
family.

6 Experimental Results

In this section we describe our experimental results.
Table 1 summarizes these results. At the end of this
paper we append data only for the TSP, PATH, and
TREE problem families; the technical report version
contains more data. We chose these problem families
because we think the data for them is more interesting,
and not because it is representative.

We use the following scoring system in the table.
We normalize the times by that of the fastest code and
use a factor of two as the threshold between adjacent
scores. For example, if the fastest code runs in x
seconds, a code running in 1.5z seconds is rated good,
in 3x seconds — fair, in 7z seconds — poor, in 12x
— bad. Our choice of the threshold makes it less
likely that a code not rated good in our experiment
would be the fastest under a different compiler and
machine architecture combination. The scoring is done

using instances with the biggest performance difference
(usually, the largest instances) for a problem family.
If a code is consistently faster than the other codes,
we mark that code with a +. Several codes can be
marked so if their performance is very close, and no
codes can be marked if there is no consistent winner.
Note that no code will get a good score on a problem
family if every code performs relatively poorly for some
parameter values.

This scoring system gives a general idea of relative
performance of the codes and is robust with respect
to many low-level implementation details and machine
architecture variations. Note that in some cases larger
problem sizes may amplify performance differences and
thus change the scores.

Data tables of the technical report (like the ones in
the Appendix), give much more information than the
above scores and can be used to explain performance
differences. All our implementations are based on the
push-relabel maximum flow method; we give counts of
the push and relabel operations which give a machine-
independent measure of performance. We also give the
average size (the number of nodes and the number of
edges) of the s-t cut problems solved. The average prob-
lem size is correlated with the algorithm performance.
In addition to the total running time, we give the time
spend computing minimum s-¢ cuts (CutTime) and the
time spend on auxilary operations (ManipTime) such
as building the cut tree, contracting nodes, etc. The
total time is equal to the sum of the CutTime, Manip-
Time, initialization time, and postprocessing (e.g. out-
put) time.

The data shows that GUS is not robust. Although
it is the fastest code on many problem families, in
some cases it performs much worse than the Gomory-Hu
algorithms.

Operation counts show that Gusfield’s algorithm
wins mostly due to its simplicity and better spatial lo-
cality resulting from the lack of contraction operations.
The algorithm works on the original graph, so the aver-
age subproblem size is the original graph size. In con-
trast, Gomory-Hu algorithm wins when it gets balanced
cuts which reduce the average size of the subproblems
and reduces the number of push and relabel operations
(which dominate the computation).

Note that if one assumes that contraction opera-
tions do not increase the number of push and relabel
operations needed to solve a minimum s-¢ cut problem,
the only reason Gusfield’s algorithm may be faster than
the Gomory-Hu algorithm is because of better locality
and the lack of contraction operations. Since the work
of the latter can be amortized, Gusfield’s algorithm can-
not win by more than a moderate constant factor. The

Gomory-Hu algorithm can, and in some cases does, win
by a wide margin.

GHs is the most robust code in our study. This code
received good marks on all problem families. It is close
to the fastest code on all problem families, although it
is seldom the fastest.

Receiving only one fair mark, GHG is almost as
robust as GHs. On some input classes (BIKEWHE,
DBLCYC, WHE), it outperforms the other codes. This
is due to the fact that on these problem classes, GHG
finds more balanced cuts and on the average works with
smaller problems. In fact, the average problem size
for GHG tends to be somewhat smaller than for GHs.
However, the size is never much smaller, and often does
not pay for the additional overhead. The TREE family
is the only problem family where GHG gets a fair score.
On this family the average problem size for GHG is
smaller than for GHs, but the problems are easy for
GHs, and GHg, finding several cuts for each problem,
spent significantly more time on each of those problems.

The GH code performs similarly to GHS on most
problem families except for a small number of families
(in particular PATH and TREE), where the former
code is noticeably slower. This seems to suggest that
the source-sink heuristic is more robust than random
selection.

7 Concluding Remarks

In this section we summarize our work and discuss
heuristics that work as well as those that do not work.

Currently, the cut tree problems are substantially
harder than the related maximum flow and minimum
cut problems, both in theory and in practice. This is
a good motivation for improving theoretical bounds for
the problem and developing faster codes for it. Our
study is a step towards the faster codes.

We get a good understanding of implementation is-
sues for the existing cut tree algorithms, as well as a
good understanding of computational performance of
these algorithms. The latter suggests heuristics for im-
proved performance. We provide experimental evidence
that the Gomory-Hu algorithm is more robust than Gus-
field’s algorithm. This is because all subproblems solved
by Gusfield’s algorithm have the same size as the input
problem. For the Gomory-Hu algorithm, however, the
average problem size can be much smaller than the orig-
inal problem size. The Gomory-Hu algorithm perfor-
mance is less predictable, because the average problem
size depends on the heuristics used. Good heuristics re-
duce the size and can substantially improve performance
on some problems.

The source selection strategy of selecting the heav-
iest node as the source is the most robust in our tests.

Random selection does not work as well, especially in
combination with the mincut heuristic.

We experimented with the simple balance heuristic
of selecting the best of two cuts at every recursive call
of the algorithm. The resulting implementation was
usually slower than GH, although not by much, and
never significantly faster. This is because the best
of the two cuts is usually not much more balanced
than the first cut. The Hao-Orlin algorithm provides
more opportunities for finding a more balanced cut,
and implementations similar to GHG deserve further
investigation.

Padberg-Rinaldi heuristics [19] proved very useful
for certain classes of global minimum cut problems. One
can use these heuristics (in a somewhat restricted form)
to speed up s-t cut computations in the Gomory-Hu
algorithm. However, on the problems these heuristics
are effective, their use tends to lead to less balanced
cuts and worse running times. This is because the
heuristics tend to contract together large subsets of
nodes. Although we invested substantial effort, we could
not use the heuristics to consistently speed up our codes.

Further study of heuristics for the Gomory-Hu
algorithm may provide significant improvements.

References

[1] R. J. Anderson and J. C. Setubal. Goldberg’s Algo-
rithm for the Maximum Flow in Perspective: a Compu-
tational Study. In D. S. Johnson and C. C. McGeoch,
editors, Network Flows and Matching: First DIMACS
Implementation Challenge, pages 1-18. AMS, 1993.

[2] D. L. Applegate and W. J. Cook. Personal communi-
cation. Rice University, 1997.

[3] C. S. Chekuri, A. V. Goldberg D. R. Karger, M. S.
Levine, and C. Stein. Experimental Study of Minimum
Cut Algorithms. In Proc. 8th ACM-SIAM Symposium
on Discrete Algorithms, pages 324-333, 1997.

[4] B. V. Cherkassky and A. V. Goldberg. On Implement-
ing Push-Relabel Method for the Maximum Flow Prob-
lem. Algorithmica, 19:390-410, 1997.

[5] U. Derigs and W. Meier. Implementing Goldberg’s
Max-Flow Algorithm — A Computational Investiga-
tion. ZOR — Methods and Models of Operations Re-
search, 33:383-403, 1989.

[6] L.R. Ford, Jr. and D. R. Fulkerson. Flows in Networks.
Princeton Univ. Press, Princeton, NJ, 1962.

[7] A. V. Goldberg. Efficient Graph Algorithms for Se-
quential and Parallel Computers. PhD thesis, M.I.T.,
January 1987. (Also available as Technical Report TR-
374, Lab. for Computer Science, M.I.T., 1987).

[8] A. V. Goldberg and S. Rao. Beyond the Flow Decom-
position Barrier. In Proc. 38th IEEE Annual Sympo-
sium on Foundations of Computer Science, pages 2-11,
1997.

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. V. Goldberg and R. E. Tarjan. A New Approach
to the Maximum Flow Problem. J. Assoc. Comput.
Mach., 35:921-940, 1988.

R. E. Gomory and T. C. Hu. Multi-terminal network
flows. J. SIAM, 9:551-570, 1961.

M. Groetschel. Personal communication. ZIB Berlin,
1997.

D. Gusfield. Very Simple Methods for All Pairs Net-
work Flow Analysis. SIAM Journal on Computing,
19:143-155, 1990.

J. Hao and J. B. Orlin. A Faster Algorithm for Finding
the Minimum Cut in a Directed Graph. J. Algorithms,
17:424-446, 1994.

T. C. Hu. Combinatorial Algorithms. Addison-Wesley,
Reading, MA, 1982.

M. Juenger, G. Rinaldi, and S. Thienel. Prac-
tical performance of efficient minimum cut algo-
rithms. In Proc. 1st Workshop on Algorithm En-
gineering, Venice, Italy, 1997. Available via URL
http://www.dsi.unive.it/ wae97/proceedings/.
Matthew S. Levine. Experimental Study of Minimum
Cut Algorithms. Technical Report MIT-LCS-TR-719,
MIT Lab for Computer Science, 1997.

H. Nagamochi, T. Ono, and T. Ibaraki. Implementing
an Efficient Minimum Capacity Cut Algorithm. Math.
Prog., 67:297-324, 1994.

Q. C. Nguyen and V. Venkateswaran. Implementations
of Goldberg-Tarjan Maximum Flow Algorithm. In
D. S. Johnson and C. C. McGeoch, editors, Network
Flows and Matching: First DIMACS Implementation
Challenge, pages 19-42. AMS, 1993.

M. Padberg and G. Rinaldi. An Efficient Algorithm
for the Minimum Capacity Cut Problem. Math. Prog.,
47:19-36, 1990.

| Problem family || Generator | # nodes | # edges | Other parameters

BIKEWHE bikewheelgen | 32,64,...,1024 2n — 3

CYC1 cyclegen 64,...,4096 n

DBLCYC dblcyclegen 64,...,1024 2n

IRREG irregulargen | 1000 4000-5000 k=28,9,W € [0...1000]

NOI1 noigen 100-800 density: 50% | P=n,k=1

NOI2 noigen 100-800 density: 50% | P=mn,k =2

NOI3 noigen 500 6000-124000 P =1000,k=1

NOI4 noigen 500 6000-124000 P =1000,k=2

NOI5 noigen 500 62000 P =1000
k=1,3,...,100, 500

NOI6 noigen 500 62000 P = 5000, 2000, ...,10,1
k=2

PATH pathgen 2000 20000 P =1,000
ke [1...2000]

PR1 prgen 200,400,...,1000 | density: 2% k=1

PR5 prgen 200,400,...,1000 | density: 2% k=2

PR6 prgen 200,400,...,1000 | density: 10% | k=2

PR7 prgen 200,400,...,600 | density: 50% | k=2

PRS prgen 200,400,...,600 | density: 100% | k =2

REG1 regulargen 301 301,...,90300

REG2 regulargen 50,100,...,800 50n

TREE treegen 800 density: 50% | k€ [1...800]

TSP tsp-instances | 500-13000 ~n

WHE wheelgen 64,128,...,1024 | 2n —2

Table 2: Problem families reported on in this paper. We experimented with more families, but do not report on
some where the results were similar to the ones we include.

Appendix: Data Tables

In the following tables we present data for the TSP,
TREE and PATH problem families.
Notes:

for GH, GHs and GHc¢ also includes the time
for the contractions done. Moreover, for GHG
it includes the time to perform double-splitting,
according to the two most balanced cuts found so

far.
e The data reported has been averaged over multiple
runs (5 different graph inputs were created each
time at random) for every problem case. e Relabels and Pushes account for the total number
of relabels and pushes during the min-cut compu-
e N and M denote the number of vertices and edges tation.

respectively.

e Aver.N and Aver.M are equal to the average size
(vertices and edges, respectively) over all subgraphs
during the min-cut computations. For GUS these
values are equal to N and M. For GH, GHs and
GHG they are often significantly smaller.

e TotalTime is the total CPU-time for each algo-
rithm. TotalTime should be slightly bigger than
CutTime+ ManipTime, (TotalTime also includes
initialization and final output).

e CutTime corresponds to the total running time
required to find all the cuts; this time is dominated
by the max-flow computations.

e The TSP table also contains the names of the TSP-
instances considered, and the PATH and TREE
tables also show the value of parameter k.

o ManipTime is the time required to manipulate the
cuts. This includes the time to build the tree and

TSP

1] Name | N] M [Aver.N [Aver.M [CutTime | ManTime [Relabels] Pushes | TotTime |
gus tsp.pr76.x.2 76 90 76.0 90.0 0.046 0.018 11266 14127 0.068
gh tsp.pr76.x.2 76 90 26.3 47.1 0.014 0.018 3349 4188 0.034
ghs tsp.pr76.x.2 76 90 30.8 53.5 0.020 0.018 4535 5709 0.042
ghg tsp.pr76.x.2 76 90 20.8 35.3 0.014 0.010 3003 4422 0.026
gus tsp.attb32.x.1 532 787 532.0 787.0 4.028 0.930 1063351 1562818 4.990
gh tsp.attb32.x.1 532 787 44.0 90.3 0.400 0.544 113526 163446 0.972
ghs tsp.att532.x.1 532 787 52.6 104.6 0.512 0.560 153862 209975 1.110
ghg tsp.attb32.x.1 532 787 19.4 37.5 0.242 0.508 41882 72700 0.778
gus tsp.vin1084.x.1 1084 1252 1084.0 1252.0 16.850 5.778 4620731 6759490 22.722
gh tsp.vm1084.x.1 1084 1252 151.0 251.2 1.784 3.912 692992 791288 5.760
ghs tsp.vm1084.x.1 1084 1252 148.4 244.4 2.174 3.898 729703 837499 6.126
ghg tsp.vin1084.x.1 1084 1252 69.0 113.0 2.642 3.758 585930 1019210 6.462
gus tsp.d1291.x.1 1291 1942 1291.0 1942.0 34.922 10.210 8799141 13794299 45.244
gh tsp.d1291.x.1 1291 1942 49.6 108.0 1.692 6.858 468269 722254 8.596
ghs tsp.d1291.x.1 1291 1942 65.6 133.6 2.528 6.812 698900 1090299 9.396
ghg tsp.d1291.x.1 1291 1942 32.1 65.5 1.768 5.398 354765 633638 7.236
gus tsp.rl1323.x.1 1323 2169 1323.0 2169.0 48.742 11.360 11847414 18843579 60.212
gh tsp.rl1323.x.1 1323 2169 145.0 347.9 7.476 7.862 1982525 3171867 15.410
ghs tsp.rl1323.x.1 1323 2169 179.6 400.5 6.494 8.012 1674102 2568434 14.568
ghg tsp.rl1323.x.1 1323 2169 84.6 187.3 5.492 6.324 1184215 2043948 11.884
gus tsp.rl1323.x.2 1323 2195 1323.0 2195.0 54.468 11.472 13154067 21379535 66.032
gh tsp.rl1323.x.2 1323 2195 136.018 331.1 6.970 7.898 1858710 2970391 14.936
ghs tsp.rl1323.x.2 1323 2195 161.6 367.1 10.320 7.904 2587602 4283288 18.274
ghg tsp.rl1323.x.2 1323 2195 87.0 198.2 8.554 6.276 1809131 3182704 14.888
gus tsp.f11400.x.1 1400 2231 1400.0 2231.0 22.182 13.050 5611206 7733388 35.336
gh tsp.f11400.x.1 1400 2231 104.3 221.5 2.770 9.140 882686 1215741 11.982
ghs tsp.f11400.x.1 1400 2231 153.7 296.6 3.902 9.102 1178439 1543050 13.072
ghg tsp.f11400.x.1 1400 2231 54.1 107.2 2.134 7.360 440222 722726 9.562
gus tsp.vm1748.x.1 1748 2336 1748.0 2336.0 57.994 22.826 14378206 21863109 80.952
gh tsp.vin1748.x.1 1748 2336 84.0 179.3 5.760 16.740 1690678 2613124 22.568
ghs tsp.vin1748.x.1 1748 2336 146.6 276.7 7.700 17.180 2141324 3188744 24.974
ghg tsp.vm1748.x.1 1748 2336 83.9 156.1 6.270 13.430 1292352 2156314 19.782
gus tsp.r15934.x.1 5934 7287 5934.0 7287.0 872.524 259.342 215146904 339530461 1132.362
gh tsp.r15934.x.1 5934 7287 94.7 179.3 21.992 198.364 6548048 9811932 220.642
ghs tsp.r15934.x.1 5934 7287 166.7 290.1 34.826 199.054 10326695 15343457 234.178
ghg tsp.r15934.x.1 5934 7287 74.8 132.4 19.593 167.161 3690344 6859845 186.579
gus tsp.r15934.x.2 5934 7627 5934.0 7627.0 1361.879 264.833 323352112 539711410 1627.174
gh tsp.r15934.x.2 5934 7627 124.6 248.8 38.140 199.346 11642651 16912327 237.774
ghs tsp.r15934.x.2 5934 7627 160.5 294.5 72.360 199.152 21090031 33203500 271.778
ghg tsp.r15934.x.2 5934 7627 75.9 136.7 36.728 167.710 7753845 14153522 204.682
gus usal3509.x0.15631 13509 15631 13509.0 15631.0 2530.176 1502.263 531347283 678321694 4033.327
gh usal3b509.x0.15631 13509 15631 214.0 390.3 104.680 1052.889 30634681 39561542 1158.174
ghs usal3b509.x0.15631 13509 15631 381.4 662.4 147.000 1063.709 45549472 53759023 1211.342
ghg usal3509.x0.15631 13509 15631 109.5 187.9 99.529 892.320 20050422 34115253 992.468
gus usal3b09.x0.17494 13509 17494 13509.0 17494.0 2936.825 1636.194 549530523 709759847 4574.013
gh usal3509.x0.17494 13509 17494 509.4 1011.7 295.418 1148.741 69743866 96070354 1444.972
ghs usal3509.x0.17494 13509 17494 1029.4 1907.0 340.760 1189.828 81149905 103254869 1531.428
ghg usal3b509.x0.17494 13509 17494 316.1 571.8 440.779 1023.730 80970759 138601854 1465.180
gus d15112.x0.19057 15112 19057 15112.0 19057.0 3268.710 1935.979 646836745 816539734 5205.931
gh d15112.x0.19057 15112 19057 765.8 1491.1 405.040 1415.519 96301486 128562817 1821.206
ghs d15112.x0.19057 15112 19057 1470.4 2678.7 564.729 1465.350 130209542 170710980 2030.944
ghg d15112.x0.19057 15112 19057 512.1 915.0 991.442 1254.776 191025627 326933722 2247.079

Table 3: Data for TSP family

TREE

[N M [K [Aver.N] Aver.M [CutTime | ManipTime | Relabels | Pushes | TotalTime |
gus 800 160600 1 800.000 160600.000 14.668 131.290 127.200 251171.000 146.026
gh 800 160600 1 800.000 126637.999 139.682 225.440 654496.800 3382659.200 365.164
ghs 800 160600 1 800.000 126635.997 51.730 215.438 127.200 251171.800 267.196
ghg 800 160600 1 400.501 63397.247 195.330 164.424 353357.400 31922655.000 359.770
gus 800 160600 3 800.000 160600.000 46.530 131.504 170829.800 794471.000 178.098
gh 800 160600 3 793.240 125034.007 167.616 224.196 765747.200 4583496.400 391.840
ghs 800 160600 3 403.766 38863.526 18.934 73.984 7531.600 284183.800 92.936
ghg 800 160600 3 202.330 19504.642 50.922 55.570 130895.800 8917101.400 106.522
gus 800 160600 5 800.000 160600.000 59.126 131.236 237671.400 1124891.400 190.412
gh 800 160600 5 792.881 124943.023 185.174 219.818 849349.400 5763163.000 405.030
ghs 800 160600 5 296.024 22990.661 11.962 44.134 11237.400 313122.400 56.118
ghg 800 160600 5 148.798 11610.357 28.988 32.786 91232.200 5175053.600 61.796
gus 800 160600 10 800.000 160600.000 80.516 131.440 349191.000 1602387.400 212.018
gh 800 160600 10 789.170 124159.165 219.236 220.068 968735.200 6947990.200 439.336
ghs 800 160600 10 194.260 11909.418 7.200 23.224 16703.400 355732.000 30.476
ghg 800 160600 10 98.268 6132.021 15.710 17.238 67740.800 2736431.000 32.962
gus 800 160600 20 800.000 160600.000 98.936 131.174 451982.800 2125038.400 230.176
gh 800 160600 20 776.144 121513.256 245.868 216.928 1055504.200 7735155.000 462.838
ghs 800 160600 20 131.732 7341.176 5.842 14.622 22917.200 408319.600 20.496
ghg 800 160600 20 68.127 3990.482 12.174 11.434 61921.600 1857187.800 23.626
gus 800 160600 50 800.000 160600.000 115.680 131.382 545664.400 2696860.800 247.110
gh 800 160600 50 727.921 112241.486 268.230 202.242 1109984.000 8832373.800 470.506
ghs 800 160600 50 99.229 6610.697 7.598 13.654 37106.600 507136.800 21.286
ghg 800 160600 50 54.427 3978.673 17.628 11.798 87508.600 1859914.000 29.450
gus 800 160600 100 800.000 160600.000 126.788 131.646 598343.800 3171652.000 258.488
gh 800 160600 100 664.094 101533.409 258.378 186.488 1054070.200 8568625.000 444.904
ghs 800 160600 100 102.320 8889.526 11.888 18.540 55722.200 616169.800 30.464
ghg 800 160600 100 60.021 5679.074 35.894 17.040 162158.400 3017374.200 52.946
gus 800 160600 200 800.000 160600.000 138.074 131.416 644957.200 3737396.000 269.544
gh 800 160600 200 594.630 91044.894 259.294 172.300 1005457.800 8267321.000 431.610
ghs 800 160600 200 121.064 13033.333 20.328 27.702 86009.000 798572.000 48.064
ghg 800 160600 200 75.154 8543.694 77.432 26.386 303894.200 5516712.800 103.842
gus 800 160600 400 800.000 160600.000 154.596 131.048 704840.200 4323066.800 285.720
gh 800 160600 400 508.545 78112.801 242.806 152.198 930439.000 7687778.200 395.044
ghs 800 160600 400 156.707 19788.667 32.374 42.148 123498.200 1073789.400 74.558
ghg 800 160600 400 98.211 12798.786 144.732 39.998 502969.000 9447691.200 184.744
gus 800 160600 800 800.000 160600.000 185.920 131.012 809714.600 5163665.600 316.990
gh 800 160600 800 449.869 69666.439 238.776 137.512 895883.200 7362390.400 376.320
ghs 800 160600 800 192.218 26378.757 46.742 55.636 166621.600 1424371.000 102.430
ghg 800 160600 800 115.630 16127.198 212.824 49.914 696121.400 12522017.200 262.764

Table 4: Data for TREE family

PATH

I N] M] K [Aver.N] Aver.M [CutTime [ManipTime | Relabels Pushes | TotalTime |
gus 2000 21990 1 2000.000 21990.000 2.738 71.926 11.000 39757.600 74.844
gh 2000 21990 1 2000.000 22864.000 53.860 111.120 3462058.200 5089280.400 165.076
ghs 2000 21990 1 2000.000 22862.001 19.528 112.792 11.000 39757.600 132.434
ghg 2000 21990 1 1000.500 11436.718 66.922 79.284 1674373.600 10123340.200 146.248
gus 2000 21990 4 2000.000 21990.000 14.940 71.836 757042.200 2022180.800 86.910
gh 2000 21990 4 1989.436 22709.442 80.414 110.346 5323845.600 9611058.800 190.858
ghs 2000 21990 4 504.145 2776.646 2.264 31.808 7482.600 73443.800 34.180
ghg 2000 21990 4 253.030 1398.473 5.224 16.604 254095.200 664068.200 21.886
gus 2000 21990 15 2000.000 21990.000 46.264 73.574 2950639.800 6537896.600 119.994
gh 2000 21990 15 1778.399 20386.260 130.034 100.612 7040216.000 16579151.400 230.760
ghs 2000 21990 15 143.347 628.790 1.196 24.778 30778.800 173520.200 26.070
ghg 2000 21990 15 75.218 354.884 2.288 11.702 118590.800 385170.600 14.042
gus 2000 21990 50 2000.000 21990.000 83.076 72.760 5057902.600 10189574.200 155.996
gh 2000 21990 50 1260.434 15504.246 136.430 81.156 6536603.200 18526364.400 217.706
ghs 2000 21990 50 60.545 381.101 2.194 23.872 90910.400 403747.600 26.186
ghg 2000 21990 50 38.562 294.205 3.900 11.676 177543.400 722060.400 15.636
gus 2000 21990 200 2000.000 21990.000 110.852 71.096 6804711.800 12232899.800 182.078
gh 2000 21990 200 266.618 3667.483 42.074 35.896 2037790.200 6330626.400 78.070
ghs 2000 21990 200 43.030 458.313 4.270 24.228 196448.200 636261.600 28.586
ghg 2000 21990 200 34.977 402.492 8.172 12.656 347545.600 1285304.800 20.882
gus 2000 21990 800 2000.000 21990.000 242.030 71.264 13343243.800 24378523.800 313.436
gh 2000 21990 800 124.977 1846.756 36.848 29.216 1658893.600 4227637.400 66.180
ghs 2000 21990 800 64.565 956.401 11.258 25.950 499685.400 1265666.400 37.322
ghg 2000 21990 800 50.957 731.543 32.882 15.852 1243339.800 3886804.200 48.794
gus 2000 21990 2000 2000.000 21990.000 554.889 70.765 28851668.800 50298108.400 625.804
gh 2000 21990 2000 126.658 2030.558 62.116 29.720 2671666.200 5836707.400 91.926
ghs 2000 21990 2000 103.921 1701.291 34.484 28.802 1501881.400 3255455.400 63.360
ghg 2000 21990 2000 67.000 1053.022 89.398 19.110 3371604.600 8772053.800 108.568

Table 5: Data for PATH family

