1 Splay Trees

1.1 Access Theorem

Search only. Later show insert, delete.

Analysis: different choices of weights. Note analysis only, don’t affect imple-
mentation.

Potential function:

e weight w, on each node =
e size s(x) is total weight of subtree nodes “number of nodes”
e rank r(z) = logs(z) “best depth” of subtree at x
e potential & = > r(x)
Main lemma: Potential change node x given root ¢ is at most 3(r(t) —r(z))+1 =
O(log(s(t)/s(x)))-
e Analyze change for one splay step
e new sizes/ranks s',7’.
e Show potential change is 3(r'(x) — r(z) except +1 for last single rot.
e telescope sum for overall result (since final 7'(z) = r(t).
Analyze one step:
e old y parent x and z parent y.

Proof from paper.
Usage:

e tricky problem with potential function. Have to account for initial poten-
tial

e (remember: real cost equals amortized cost minus change in potential.
e just upper bound initial, charge as part of real cost.

e m accesses on n nodes

e item i weight w;, Y w; = W.

e initial potential at most nlog W

e final potential at least ) logw;

e max change at most y_ log W/w;

e amortized cost of splaying item i is O(log W/w;).

(note potential change equals cost of splaying each item once)



1.2 Applications
Balance theorem: total access O((m + n)logn) (as good as any balanced tree)
e weight 1/n to each node.
¢ potential drop nlogn
e amortized cost of search: 1+ 3logn
Static Optimality: (as good as any fixed tree)
e item ¢ accessed p;m times

e lower bound for static access: m Y p;log1/p; (entropy)

item weight p;
[ ] W = ]_

access time for item 7 at most 3(1 — logp;) + 1 =O(1 + log1/p;)

potential drop O(}_log1/p;).
Static finger theorem:

o wi=1/(1+]i - f)?

o S w; <23 1/k? =0(1)

e access time O(logli — f|)

e potential drop O(nlogn)
Working set theorem:

e At access j to item i , let t; be number of distinct items since that item
was last accessed. Then time O(nlogn + ) logt;).

Unified theorem: cost is sum of logs of best possible choices from previous
theorem.
Balance theorem: total access O((m + n)logn) (as good as any balanced tree)

e weight 1 to each node.

e potential drop nlogn

e amortized cost of search: 1+ 3logn
Static Optimality: (as good as any fixed tree)

e item ¢ accessed p;m times

e lower bound for static access: m Y _ p;log1/p; (entropy)



item weight p;
w=1
access time for item ¢ at most 3(1 — logp;) +1 = O(1 +log1/p;)

total O3> (p;m)log1/p;)
potential drop O(> " log1/p;).

Static finger theorem:

1.3

wi = 1/(1+ |i — f])?
Sw; <23 1/k2 = 0(1)
access time O(log |i — f|)

potential drop O(nlogn)

Updates

Update operations: insert, delete, search (might not be there)

define split, join
set w; = 1 so splay is O(logn).
to split, splay and separate—splay O(logn), potential drops

to join, access largest item and merge—splay O(logn), root potential only
up by O(logn)

splits and joints have amortized cost O(logn)
insert /delete via split/join

important to splay on unsuccessful search

Remarks

Top down splaying.

can choose to splay only when path is “long” (real cost to large so need
to amortize). Drawback: must know weights.

can choose to stop splaying after a while. good for random access freque-
nies.

Open: dynamic optimality.
Open: dynamic finger

tarjan: sequential splay is O(n)



1.4 Persistent Data Structures

Sarnak and Tarjan, ”Planar Point Location using persistent trees”, Communi-
cations of the ACM 29 (1986) 669-679

”Making Data Structures Persistent” by Driscoll, Sarnak, Sleator and Tarjan
Journal of Computer and System Sciences 38(1) 1989

Idea: be able to query and/or modify past versions of data structure.

e ephemeral: changes to struct destroy all past info

e partial persistence: changes to most recent version, query to all past ver-
sions

o full persistence: queries and changes to all past versions (creates “multiple
worlds” situtation

Goal: general technique that can be applied to any data structure.
Application: planar point location.

e planar subdivision

— n segments meeting only at ends
— defines set of polygons

— query: “what polygon contains this point”
e numerous special-purpose solutions
¢ One solution:

— vertical line through each vertex

divides into slabs

— in slab, segments maintain one vertical ordering

find query point slab by binary search
— build binary search tree for slab with “above-below” queries

— n binary search trees, size O(n?), time O(n?logn)

observation: trees all very similar

think of x axis as time, slabs as “epochs”

at end of epoch, “delete” segments that end, “insert” those that start.

over all time, only n inserts, n deletes.
e must be able to query over all times
Persistent sorted sets:

e find(z, s,t) find (largest key below) z in set s at time ¢



e insert(i, s,t) insert ¢ in s at time ¢
o delete(i, s,1).

We use partial persistence: updates only in “present”
Implement via persistent, search trees.
Result: O(n) space, O(logn) query time for planar point location.



