
IOI 2002
Yong-In, Korea

Page 1 of 142

FOREWORD

The materials in this booklet were used at IOI2002 held August 18-25, 2002 in Yong-
In, Korea. The IOI venue was the central library building at Kyung Hee University. More
than 270 contestants from 77 countries took part in the competition.

In Korea, the national programming contest for secondary school students was first held

in 1984. Korea first participated as an Observer at the 3rd IOI held in Greece. This year
we confidently hosted IOI2002 in Korea.

The Scientific Committee of IOI2002 consisted of three subcommittees: Task,

Evaluation and Technical. Creating an excellent set of competition tasks is the key to the
success of IOI while ensuring continuity. Computing environments remain almost the
same as in IOI2001. A new grading system was designed and implemented to fit the
IOI2002 competition rules.

A new evaluation policy for an output-only task was used. In this evaluation policy, the

score of each contestant’s solution depends on the best solution from among all
contestants’ submissions. This policy allows for the possibility of partial credit, and the
output-only nature of the tasks also avoids the problem of imprecision and other errors in
timing program execution.

We hope that this booklet helps in preparing future IOI competitions.

Kyung-Yong Chwa,
Chair of Scientific Committee of IOI2002

Yong-In city, August 18, 2002

IOI 2002
Yong-In, Korea

Page 2 of 142

TABLE OF CONTENTS

FOREWORD.. 1

TABLE OF CONTENTS ... 2

INTRODUCTION.. 3

DAY0 (Practice Session).. 6

Practice Task 1: NUMBER ... 6

Practice Task 2: STRING .. 7

Practice Task 3: RED... 10

Evaluation Results of Internet Practice Session... 13

DAY1 ... 14

TASK OVERVIEW SHEET / DAY-1... 14

Task 1: FROG.. 15

Task 2: UTOPIA.. 23

Task 3: XOR .. 32

Result of Day1 Competition... 49

DAY2 ... 51

TASK OVERVIEW SHEET / DAY-2... 51

Task 1: BATCH .. 52

Task 2: BUS ... 59

Task 3: RODS .. 68

Result of Day2 Competition... 81

BACKUP TASKS .. 83

Back-Up Task 1: NETWORK .. 83

Back-Up Task 2: DIAMOND.. 86

SUBMITTED TASKS.. 89

Submitted Task 1: ROBOT ... 89

Submitted Task 2: PICTURE.. 93

Submitted Task 3: BRIDGE .. 96

APPENDIX I: IOI 2002 Competition Rules .. 98

APPENDIX II: Programming Environment... 104

APPENDIX III: User Manual for IOI 2002 ... 107

APPENDIX IV: IOI 2002 Contest System Users’ Manual.. 111

APPENDIX V: List of Contestants .. 121

APPENDIX VI: Contestant Questionnaire .. 127

Appendix VII: Delegation Questionnaire... 136

IOI 2002
Yong-In, Korea

Page 3 of 142

INTRODUCTION

First we will explain the procedure used by the ISC (International Scientific
Committee) and the HSC (Host Scientific Committee) to prepare and select the
competition tasks. Then we will give an overview of the tasks, including solutions for and
the basic theory behind them.

After the “Call for Tasks” announcement our HSC received 20 problems from Korea

and abroad. Of these, we excluded 4 problems which were not mature enough to be used
in IOI-style competition tasks. The HSC then prepared all solutions and test data sets (20
test cases for each task) and discussed these sets with the ISC members in July. The
meetings held concerning IOI2002 task preparation were follows:

Call for Tasks announcement (Oct. 2001)
1st HSC meeting at KAIST (Jan. 4)
 - discussed computer specification
 - discussed Competition Rules
2nd HSC meeting in Pusan (Feb. 4-6)
 - discussed submitted tasks
 - selected 17 candidate tasks
International Committee Meeting in Seoul (Feb. 17)
 - reported the current state of the tasks to IC
3rd HSC meeting at KAIST (Mar. 29-30)
 - reviewed the first draft of candidate tasks
 - programmed solutions
4th HSC meeting at KAIST (Apr. 26-28)
 - reviewed solution programs and test data
 - tested solution programs for timing
5th HSC meeting at KAIST (May 4)
ISC meeting at KAIST (May 11-18)
 - HSC and ISC reviewed and discussed the first draft of tasks
 - Prof. Kunsoo Park explained our evaluation system and discussed with ISC
 - ISC selected 7 competition tasks out of 16 tasks
 - ISC improved the presentation style of 7 selected tasks.
6th HSC meeting at KAIST (Jul. 3-5)
7th HSC meeting at KAIST (Jul. 22-23)
 - demonstrated task evaluation system
 - loaded and tested solution programs and task library on the evaluation server
Evaluation system was tested on-line and off-line (Jul. 25)
Internet Practice Session Opened (Aug. 6)
8th HSC meeting at KAIST (Aug. 7)
 - finalized tasks and solutions

IOI 2002
Yong-In, Korea

Page 4 of 142

TASK SUMMARY

TASK NAME DECISION
by ISC and HSC TYPE FINAL

DECISION
BATCH Accept Typical DAY2, TASK1
BRIDGE Reject Typical, Heuristics

BUS Accept Typical DAY2, TASK2
DIAMOND Accept Typical Backup Task

FROG Accept Typical DAY1, TASK1
GENE Reject Typical

INTERNET Reject Typical
NETWORK Practice Typical
PICTURE Reject Reactive, Heuristics
ROBOT Reject New kind
RODS Accept Reactive DAY2, TASK3
SEED Reject Reactive

STRING Practice Reactive Practice Task
UTOPIA Accept Typical DAY1, TASK2

XOR Accept Output only DAY1, TASK3

IOI2002 used a new evaluation method, namely relative scoring (initially called
tournament scoring). In this scoring policy, the number of points awarded to each
competitor’s solution depends on the best solution submitted by any competitor: a
competitor whose answer on a test case is as good as the best submission gets full marks,
and other students get partial credit according to how close to that answer their submission
was. XOR was chosen to be scored in this manner, and it was also decided that it be
phrased as an “output-only” task. This means that all (10) test data input sets are given to
contestants at the beginning of competition, and instead of submitting source code as in a
typical IOI task, contestants to submit only the output files corresponding to the given data
sets. Grading using relative scoring is performed in two steps: first, we evaluate the
absolute performance of each solution, and second we compare the performance of
contestant’s solution to the performance of others. The final score given for each test case
is the relative ratio of “Contestant’s result” / “Best result among submitted solutions.”

It is worth noting that the ISC and HSC weighed the fact that ROBOT is of a type of

task new to the IOI. However, ROBOT was in the end rejected since IOI2002 did not
seem to be the right moment to introduce it in view of the other changes which were
considered more immediately workable. We include that task in this IOI2002 book with
one solution, and we hope this innovative type of task will be accepted in future IOIs to
broaden the IOI task repertoire even further.

One difficulty in preparing tasks and solutions is the difference between C/C++ and

Pascal; much effort has been put into examining and understanding the differences and

IOI 2002
Yong-In, Korea

Page 5 of 142

their impact on an IOI. Generally, we find C/C++ to be faster than Pascal, on one
occasion up to 4 times faster for equivalent code. Of course, this depends on the
programming style used in both languages. However, the relative performance also varies
by task; we were surprised to find that in some of the backup tasks, our optimized Pascal
programs ran faster than our optimized C/C++ programs.

We found little performance difference between Linux and Windows XP, although

developing two different contest environments for the two operating systems while trying
to keep them as identical as possible proved to be extremely difficult. We hope this two-
OS problem will be eliminated in future IOIs.

We hope the material presented here will be helpful to the IOI2003 Scientific

Committee and will be instructive to IOI2002 leaders and contestants.

IOI 2002
Yong-In, Korea

Page 6 of 142

DAY0 (Practice Session)

Practice Task 1: NUMBER

Hwan Gue Cho

Number of Distinct Values

PROBLEM

You are to write a program, which, given N positive integer values X1, X2, …, XN, compute
the number of distinct values in those N integer values.

INPUT

Your program reads input from standard input. The first line contains one integer: the
number N, 2 ≤ N ≤ 1000. The following N lines represent the values X1, X2, …, XN, and
each of these lines contains one integer: a value Xi , 1 ≤ Xi ≤ 10000.

OUTPUT

Your program writes output to standard output. The output contains one integer: the
number of distinct values in X1, X2, …, XN.

EXAMPLE INPUTS AND OUTPUTS

Example 1: input output

Example 2: input output

5
123
321
123
231
321

3

10
1
2
3
4
5
4
3
2
1
2

5

IOI 2002
Yong-In, Korea

Page 7 of 142

SCORING

If the output is correct, you get full score for the test case. Otherwise the score for the test
case is 0.

Practice Task 2: STRING

Sung Kwon Kim

String from Substrings

PROBLEM

Every DNA string consists of only 4 letters, A, T, G and C. You have an unknown DNA
string and must determine the string. The only way you can access information about the
hidden string is through an oracle. The oracle, when given a query string S, answers
whether the hidden string contains S as a substring. For example, let the hidden string be
So= “ATTGCGCGATCG”. Then “ATTG” and “CGCG”, “T”, “AT” are substrings of So. But
neither of “TGG” or “GCGATG” is not a substring of So. When a string So is represented as
So= (s[1], s[2], s[3], …, s[N]), where s[i] is the i-th character of So, then a substring of So
is a consecutive subsequence represented as (s[i], s[i+1], s[i+2], …, s[j]), where 1 ≤ i ≤ j ≤
N ≤ 255.

You are to write a program, which determines the hidden string using as few oracle
queries as possible.

LIBRARY

You are given a library in the following.

GNU C/C++ Library: (oracle.h, oracle.o)

The C/C++ library has the following three functions:

void start_string(): The call to start. It should be called only once at the

beginning.
int oracle_call(char *S): If S is a substring of the hidden string, this function

returns 1. Otherwise, this function returns 0. The query
string S should not be an empty string, and the length of S
should be equal or less than 255.

void answer_string(char *S): This function will terminate your program. Your
program passes the string S as an answer. This should be
called only once at the end of the program.

IOI 2002
Yong-In, Korea

Page 8 of 142

Instruction: To compile your string.c or string.cpp, use the include statement
#include “oracle.h”

in the source code and compile it as:
gcc –O2 –static string.c oracle.o –lm
g++ –O2 –static string.cpp oracle.o –lm
lib_test.c shows how to use the GNU C/C++ library.

FreePascal Library: (oracle.ppu, oracle.o)

The corresponding pascal library functions are
procedure start_string;
function oracle_call(S: string): integer;
procedure answer_string(S: string);

Instruction: To compile your string.pas, include the import statement
uses oracle;

in the source code and compile it as
fpc –So –O2 –XS string.pas
lib_test.pas shows how to use the FreePascal library.

The library generates a file named string.out automatically in a call to
answer_string. The file string.out has two lines. The integer in the first line
shows the number of calls to oracle_call made by your program and the second line
contains the hidden string your program has given as a solution.

EXAMPLE INPUTS AND OUTPUTS

The length L of the hidden string satisfies 1 ≤ L ≤ 255. You can experiment with the
library by creating a text file string.in with a single line which contains the hidden
DNA string. Note that the string.out in the following example is not necessarily
optimal. It merely shows the file format of input and output.

Example1: string.in

string.out

SCORING

If your program violates one of constraints (e.g. calling too many function calls), then you
get 0 point.

ATTGCGCGATCG

41
ATTGCGCGATCG

IOI 2002
Yong-In, Korea

Page 9 of 142

If your solution is not correct, then the score is 0. When the output solution is correct,
then your score depends on the number of library function calls for each testing data. For
each data if the number of function calls is less than a bound B (that is fixed independently
for each data), then you get full score. Otherwise you will get 0 points.

A. Solutions

(a) simple solution

A simple solution is to try each of 4k strings from k=1, 2, …. Stop when there is no string
of length k+1 with answer “yes.” The string of length k with a “yes” is the hidden string.
In case of English strings, replace 4 by 26.

(b) Suggested solution

4(N+2) oracle calls are sufficient. (26(N+2) in case of English strings) Assume that a
string s is known to be a substring of the hidden string. Append each character to s to
have four strings, sA, sC, sG, and sT. Call the oracle with each of the four strings. If any
of the four calls gets an answer “yes,” them we have succeeded in incrementing the length
by one. We may repeat. If every one gets an answer “no,” then we can say that s is a suffix
of the hidden string. We prefix each character to s, having As, Cs, Gs, Ts. Again call the
oracle with each of these four strings. If any one is answered “yes,” the length of the string
known to be a substring of the hidden string can be incremented by one. If none is
answered “yes,” then s itself is the hidden string. Initially, s=A, or C, or G, or T. Four calls
to the oracle to determine the initial single character s.

Four calls to determine each character of the hidden string. Four calls to determine the end
of the string, and another four to determine the start.

(c) A more complicated solution

 A more sophisticate method with 3N+Θ(sqrt(N)) is possible. See the reference [1].

B. Test Data Information

Test data sequences can be obtained from a “real” E.coli or C.elegance whose whole DNA
sequence (multi mega bytes) can be downloaded via several bioinformatics related web
sites.

C. Background

This is an important problem in computational molecular biology, especially in genome
sequencing. Genome sequencing is to read the DNA sequences of an organism, such as
human, mouse, and worm. One of the methods used in sequencing a (unknown) DNA

IOI 2002
Yong-In, Korea

Page 10 of 142

sequence is to use DNA chips. An experiment with DNA chips tell us which substrings in
the chips belong to the (unknown) DNA sequence and which substrings do not.
Constructing the whole sequence by collecting these information is a place where this
problem might apply.

D. History

This problem is a variant of the so-called ‘superstring’ problem, in which, given a set of
strings, we want to find a shortest string that contains the strings in the set as substrings.
This problem is known to be NP-complete.

E. References

[1] S. Skiena, Reconstructing strings from substrings, Journal of Computational
Biology 2 (1995) 333-353.

Practice Task 3: RED

Chong-Dae Park

Red Devil

PROBLEM

Red Devil, the Korean national soccer team supporters club will have a country-wide tour
to N cities to celebrate the achievement in 2002 FIFA World Cup Korea/Japan.

Cities are represented by numbers 1, 2, …, N. The Red Devil’s tour starts with city 1 and
visits all N cities exactly once, after which it should return to city 1, the starting position.
The travel distance between two cities I and J, denoted by d(I,J) is known.

Note that the distance from city I to city J is symmetric to the distance from city J to city
I, that is, d(I,J) = d(J,I). For any three distinct cities I, J, and K, it holds that d(I,K) ≤ d(I,J)
+ d(J,K). Furthermore it holds that d(I,I)=0 for any city I.

Given the distance between cities, you are to find a Red Devil’s tour with the shortest
possible length. You are given the input files describing the distances. You must submit
files describing the tours, not a program to find the tours.

INPUT

IOI 2002
Yong-In, Korea

Page 11 of 142

You are given 4 problem instances in the text files named red1.in to red4.in. Each
input file is organized as follows. The first line contains one integer: the number of cities,
N, 5 ≤ N ≤ 50. The following N lines represent the distance d(I,J), where for each d(I,J) we
have 0 ≤ d(I,J) ≤ 50. These N lines are organized in such a way that the Kth of these N
lines contains N integers: the distance d(K,1), d(K,2), …, d(K,N). This way, the input is
organized in the following form:

N
d(1,1) d(1,2) … d(1,N)
d(2,1) d(2,2) … d(2,N)
…
d(N,1) d(N,2) … d(N,N)

OUTPUT

You are to submit 4 output files corresponding to the given input files. You do not need to
submit your solution program source.

The first line contains the text
#FILE red I
where integer I is the number of the respective input file. The second line contains N+1
integers, which represent the cities in the order in which they are visited in the tour of
your solution.

EXAMPLE INPUTS AND OUTPUTS

Example1: red0.in red0.out

SCORING

If the output is not a valid tour, your score is zero. Otherwise, your score is 5 + 20 ×
DistanceInBestAnswer / DistanceInYourAnswer.

The score is rounded off to the first decimal place for each case. The total score is rounded
off to the nearest integer.

Suppose that you submit the tour “1→3→2→5→4→1”. The length of your tour is 26. If
the best of submitted solutions is a tour “1→2→3→4→5→1”, whose length is 18, your
score becomes 5+20×18/26(= 18.846…), which will be rounded off to 18.8.

5
0 2 5 9 5
2 0 3 7 5
5 3 0 4 6
9 7 4 0 4
5 5 6 4 0

#FILE red 0
1 3 2 5 4 1

IOI 2002
Yong-In, Korea

Page 12 of 142

A. Solution

This is a famous Traveling Sales Person (TSP) problem, which is one of typical NP-hard
problem. There are lots of heuristics for this problem. It is easy to find useful references
and books.

ftp://ftp.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsp/index.html gives traveling sales
person problem instances and solutions. http://www.math.princeton.edu/tsp/ is one of TSP
Home Page. According to this site, Mathematical problems related to the traveling
salesman problem were treated in the 1800s by the Irish mathematician Sir William
Rowan Hamilton and by the British mathematician Thomas Penyngton Kirkman. A nice
discussion of the early work of Hamilton and Kirkman can be found in the book Graph
Theory 1736-1936 by N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Clarendon Press,
Oxford, 1976. The general form of the TSP appears to be have been first studied by
mathematicians starting in the 1930s by Karl Menger in Vienna and Harvard. A detailed
treatment of the connection between Menger and Whitney, and the growth of the TSP as a
topic of study can be found in Alexander Schrijver's paper “On the history of
combinatorial optimization (till 1960)”.

Most recent result on this problem is work done by D. Applegate, R. Bixby, V. Chvátal,
and W. Cook who solved 15,112 cities instance D15112 (this is one of the larger TSP
instances in TSPLIB. It contains 15,112 cities in Germany (D = Deutschland). The data
set was contributed to TSPLIB by Andre Rohe.

See http://www.math.princeton.edu/tsp/d15112/d15112_info.html for D15112.

B. Relative Scoring

Other issue in RED is the relative scoring policy, which was first proposed and
implemented in IOI 2002. Relative scoring gives scores according to the relative quality of
the solution. This is an open-ended competition, which means better solution will receive
more scores and any valid answer receives some points. It is suitable for NP-hard class or
real world problems. Score will be given by a function of submitted solution (A) and the
best solution (BEST) Scoring function: base + proportional × (BEST/A). For example,
Task RED if the submitted tour length is 26 and the shortest submitted tour length is 18,
score = 5 + 20 × (18/26) = 18.846…, rounded to 18.8. So best solution earns full score: 5
+ 20 × (18/18) = 25. If the best solution is changed by an appeal, then grading will be
performed again. This might affect the others score.

IOI 2002
Yong-In, Korea

Page 13 of 142

Evaluation Results of Internet Practice Session

We have announced three practice tasks to all contestants to help them understand the
procedure of submission, evaluation system and task styles for IOI2002. On-line practice
session was conducted by Internet in August 6. We received several solutions and output
files (for RED) and evaluated those materials of contestants.

Task name Number of
submissions

Number of Full
score solutions

Average score of
contestants

NUMBER 91 82 94.07

STRING 69 56 86.38

RED 85 8 82.90

IOI 2002
Yong-In, Korea

Page 14 of 142

DAY1

TASK OVERVIEW SHEET / DAY-1

TASK FROG UTOPIA XOR

Linux ~/frog ~/utopia ~/xor Task
material
directory WinXP C:\IOI\frog C:\IOI\utopia C:\IOI\xor

Time limit per test 2 secs 2 secs -
Memory limit 64 MB 32 MB -

C and
C++

-O2 –static
–lm

-O2 –static –
lm

- Compiler
options

Pascal -So –O2 –XS -So –O2 –XS -
Number of tests 25 25 10
Maximum points
per test

4 4 10

Maximum total
points

100 100 100

Program header
comment when
using C

/*
TASK: frog
LANG: C
*/

/*
TASK: utopia
LANG: C
*/

-

Program header
comment when
using C++

/*
TASK: frog
LANG: C++
*/

/*
TASK: utopia
LANG: C++
*/

-

Program header
comment when
using Pascal

{
TASK: frog
LANG: PASCAL
}

{
TASK: utopia
LANG: PASCAL
}

-

Submission is
accepted, if;

Example 1 is
solved.

Example 1 is
solved.

The file format is
correct.

IOI 2002
Yong-In, Korea

Page 15 of 142

Task 1: FROG

Soo Hwan Kim, Greg Galperin

The Troublesome Frog

PROBLEM

In Korea, the naughtiness of the cheonggaeguri, a small frog, is legendary. This is a well-
deserved reputation, because the frogs jump through your rice paddy at night, flattening
rice plants. In the morning, after noting which plants have been flattened, you want to
identify the path of the frog which did the most damage. A frog always jumps through the
paddy in a straight line, with every hop the same length:

Different frogs can jump with
different hop lengths: And in different

 directions:

Your rice paddy has plants arranged on the intersection points of a grid as shown in Figure
-1, and the troublesome frogs hop completely through your paddy, starting outside the
paddy on one side and ending outside the paddy on the other side as shown in Figure-2:

Many frogs can jump through the paddy, hopping from rice plant to rice plant. Every hop
lands on a plant and flattens it, as in Figure-3. Note that some plants may be landed on by
more than one frog during the night. Of course, you can not see the lines showing the
paths of the frogs or any of their hops outside of your paddy – for the situation in Figure-
3, what you can see is shown in Figure-4:

1 2 3 4 5 6 7
1
2
3
4
5
6

Figure-1

1 2 3 4 5 6 7
1
2
3
4
5
6

Figure-2

1 2 3 4 5 6 7
1
2
3
4
5
6

Figure-3

1 2 3 4 5 6 7
1
2
3
4
5
6

Figure-4

IOI 2002
Yong-In, Korea

Page 16 of 142

From Figure-4, you can reconstruct all the possible paths which the frogs may have
followed across your paddy. You are only interested in frogs which have landed on at
least 3 of your rice plants in their voyage through the paddy. Such a path is said to be a
frog path. In this case, that means that the three paths shown in Figure-3 are frog paths
(there are also other possible frog paths). The vertical path down column 1 might have
been a frog path with hop length 4 except there are only 2 plants flattened so we are not
interested; and the diagonal path including the plants on row 2 col. 3, row 3 col. 4, and
row 6 col. 7 has three flat plants but there is no regular hop length which could have
spaced the hops in this way while still landing on at least 3 plants, and hence it is not a
frog path. Note also that along the line a frog path follows there may be additional
flattened plants which do not need to be landed on by that path (see the plant at (2, 6) on
the horizontal path across row 2 in Figure-4), and in fact some flattened plants may not be
explained by any frog path at all.

Your task is to write a program to determine the maximum number of landings in any
single frog path (where the maximum is taken over all possible frog paths). In Figure-4
the answer is 7, obtained from the frog path across row 6.

INPUT

Your program is to read from standard input. The first line contains two integers R and C,
respectively the number of rows and columns in your rice paddy, 1 ≤ R,C ≤ 5000. The
second line contains the single integer N, the number of flattened rice plants, 3 ≤ N ≤
5000. Each of the remaining N lines contains two integers, the row number (1 ≤ row
number ≤ R) and the column number (1 ≤ column number ≤ C) of a flattened rice plant,
separated by one blank. Each flattened plant is only listed once.

OUTPUT

Your program is to write to standard output. The output contains one line with a single
integer, the number of plants flattened along a frog path which did the most damage if
there exists at least one frog path, otherwise, 0.

IOI 2002
Yong-In, Korea

Page 17 of 142

EXAMPLE INPUTS AND OUTPUTS

Example 1: input output

 (the example of Figure-4)

7 6 7
14
2 1
6 6
4 2
2 5
2 6
2 7
3 4
6 1
6 2
2 3
6 3
6 4
6 5
6 7

Example 2: input (the example of Figure-5)

6 7
18
1 1
6 2
3 5
1 5
4 7
1 2
1 4
1 6
1 7
2 1
2 3
2 6
4 2
4 4
4 5
5 4
5 5
6 6

 output

4

1 2 3 4 5 6 7
1
2
3
4
5
6

Figure-5

Figure-6: The maximum number of
plants flattened by a frog is 4.

1 2 3 4 5 6 7
1
2
3
4
5
6

IOI 2002
Yong-In, Korea

Page 18 of 142

SCORING

If your program outputs the correct answer for a test case within the time limit, then you
get full points for the test case, and otherwise you get 0 points.

A. Solution

A naïve O(N3) time algorithm for the problem iterates through all O(N2) line segments
induced by the point set S, and determines how far each segment spacing can be extended
to either direction within the point set (O(# landings) = O(N)).

An efficient O(N2) time algorithm for the problem is based on an algorithm for finding an
equally-spaced collinear subset of a set. The algorithm works by “overlapping” all equally
spaced triples in order to determine all maximal equally-spaced collinear subsets. The
“overlapping” is performed by constructing an undirected graph where for each equally-
spaced triple (pA, pB, pC) we create nodes <A,B> and <B,C> and the edge (<A,B>,
<B,C>); connected components in this graph correspond to maximal equally-spaced
collinear subsets in the original set. Observe that a frog path is simply a linear chain of
connected nodes (with at least one edge and two nodes, meaning at least 3 flattened
plants) in this graph. Each node in this graph has degree at most two, so the edge set and
vertex set both have size O(N2). Hence we can find all maximal equally-space collinear
subsets in O(N2) time from the graph.

The only detail here is how to efficiently find the equally-spaced triples from which the
graph is created. The obvious method of iterating over all triples of flattened plants would
worsen the complexity to O(N3). If instead the field is stored as a two-dimensional array
(every plant has an entry) giving the identity of the landing on that plant (e.g., if the 100th
flattened plant were at (10, 12), then the array value at (10, 12) is 100), you can loop over
pairs of flattened plants pA and pB, and then look up pC from the array in constant time
since you know what the location of pC must be if it exists. This strategy takes O(N2) time
but uses O(field size) memory – in particular, it needs 5000*5000 entries of a short integer
each, or 50MB. Because the above graph also needs O(N2) space to store it, this strategy
unfortunately would exceed the memory limit of 64MB. However, as this array is very
sparse, it may be stored in memory as a hash table, which in the expected case does not
affect the time complexity (but which in the worst case does). The third and best option is
to construct the graph in linear time and constant memory by sorting the locations (e.g.,
row major, column minor) and keeping 3 pointers into the list (A, B, and C for pointing to
pA, pB, and pC, A<B<C) as follows; loop A over all values, and for each A march B and C
down the list, moving either B or C forward at each step so as to try to maintain as close to
equal spacing as possible; when exactly equal spacing is found, enter the nodes and edge
into the graph.

There is also an O(N2) dynamic programming algorithm to solve this problem, which is
plagued by the same memory problems as illustrated above. In addition to storing the
identity matrix described above, store another O(N2) matrix containing whose rows are
indexed by pA; along the row are N entries, one per plant pB giving the number of landings

IOI 2002
Yong-In, Korea

Page 19 of 142

in a candidate frog path which goes through pA and pA but which only uses points which
sort before pA in the ordered list (i.e., pretend the field ends at pA, and look for frog paths
of any length in that smaller field – the idea is to find partial frog paths which violate none
of the frog path conditions in the region of the field already examined). Assuming the
table is filled up to row A, row A+1 is filled by considering all O(N) flattened plants B
before pA, and if there is a flattened plant C such that A, B, and C are equally spaced, look
up in the array the number of landings in the candidate frog path through B from C,
increment by 1, and store as the Bth entry in the row for A. If C would be outside the field,
then enter it as having 2 flattenings. At the same time check to see if the next flattened
plant (D) would be outside the graph, and if so, you have a completed frog path. To
efficiently determine C, the same 50MB array as above is needed; a hash table can again
be used, with no increase in average-case time complexity, but an increase in worst-case
time complexity.

B. Testing

Sungjoon Choi

The test data contains 25 test cases. Most of data are initially generated by random
function, then they are modified by manual work.

Each test case has size N (the number of points) in the range between 10 and 5000.
Among 25 test cases, 10 test cases have size N ≤ 1000. The remaining 15 test cases have
size N ≥ 2000. The detail on the test data is summarized in the following table.

Each test case is worth 4 points. A program which implements a cubic time algorithm can
solve the test cases within time limit such that their size N ≤ 1000. An implementation of
this algorithm should be able to get the first 10 test cases correct but will likely run out of
time on all other cases (scoring 40% of the points).

Testing Data Description FROG

No. N, (R*C) Description Solution
1 18, (6 * 7) Sample data in the task description 4
2 10, (10 * 10) Manually designed 5
3 25, (50 * 50) Manually designed 13
4 50, (10 * 10) Several Lines + random points 10
5 100, (20 * 20) modified random point set 10
6 300, (30 * 30) modified random point set 15
7 500, (55 * 55) Several Lines + random points 28
8 500, (100 * 100) Special case for no solution 0
9 1000, (100 * 100) Several Lines + random points 34
10 1000, (1000 * 1000) Several Lines + random points 250
11 2000, (50 * 50) Random (uniform) points 25
12 2000, (100 * 200) Several Lines + random points 33
13 2000, (1000 * 2000) Several Lines + random points 333

IOI 2002
Yong-In, Korea

Page 20 of 142

14 3000, (60 * 60) Uniformly random points 31
15 3000, (500 * 500) X shapes and random points 500
16 3000, (5000 * 1) Horizontal line 20
17 3000, (5 * 1000) Several Lines + random points 17
18 4000, (100 * 100) Random points (uniformly) 34
19 4000, (200 * 20) Very dense points set 200
20 4000, (1000 * 1000) Several Lines + random points 500
21 4000, (5000 * 5000) Several Lines + random points 311
22 5000, (100 * 100) Chess board style 100
23 5000, (1000 * 1000) Several Lines + random points 334
24 5000, (3000 * 3000) Irregular linear points 1000
25 5000, (5000 * 5000) Modified random points 72

C. Background

The problem “The Troublesome Frog” is related to the problem for detecting spatial
regularity in images. Spatial regularity detection is an important problem in a number of
domains such as computer vision, scene analysis, and landmine detection from infrared
terrain images. The AMESCS(All Maximum Equally-Spaced Collinear Subset) problem is
defined as follows. Given a set P of N points in Ed, find all maximal equally-spaced,
collinear subset of points. Kahng and Robins[1] present an optimal quadratic time
algorithm for solving the AMESCS problem.

D. REFERENCE

[1] A B. Kahng and G. Robins, Optimal algorithms extracting spatial regularity in
images, Pattern Recognition Letters, 12, 757-764, 1991.

E. Source Code for FROG

Sungjoon Choi

/*
TASK: frog
LANG: C
*/

#include <stdio.h>
#define Max 5000

int p[Max][2], l[Max][Max];
int r, c, n, sol;

void ReadInput()
{
 int i;

 scanf("%d%d", &r, &c);
 scanf("%d", &n);
 for (i = 0; i < n; i++)
 scanf("%d%d", &p[i][0], &p[i][1]);

IOI 2002
Yong-In, Korea

Page 21 of 142

}

void Sort(int l, int r)
{
 int i, j, x0, x1, y;
 i = l; j = r; x0 = p[(l + r) / 2][0]; x1 = p[(l + r) / 2][1];
 do
 {
 while ((p[i][0] < x0) || ((p[i][0] == x0) && (p[i][1] < x1))) i++;
 while ((x0 < p[j][0]) || ((p[j][0] == x0) && (x1 < p[j][1]))) j--;
 if (i <= j)
 {
 y = p[i][0]; p[i][0] = p[j][0]; p[j][0] = y;
 y = p[i][1]; p[i][1] = p[j][1]; p[j][1] = y;
 i++;
 j--;
 }
 } while (i <= j);
 if (l < j) Sort(l, j);
 if (i < r) Sort(i, r);
}

int IsRegular(int a, int b, int c)
{
 if (p[b][0] - p[a][0] == p[c][0] - p[b][0])
 {
 if (p[b][1] - p[a][1] < p[c][1] - p[b][1]) return 1;
 else if (p[b][1] - p[a][1] == p[c][1] - p[b][1]) return 2;
 else return 3;
 }
 else
 if (p[b][0] - p[a][0] < p[c][0] - p[b][0]) return 1; else return 3;
}

void Run()
{
 int i, j, k, a, b, count, flag;

 for (i = 0; i < n - 2; i++)
 {
 flag = 0;
 j = i + 1;
 k = i + 1;
 while (flag || (k < n))
 {
 if (flag) j++; else k++;
 switch (IsRegular(i, j, k))
 {
 case 1: flag = 1; break;
 case 2: l[i][j] = k; break;
 case 3: flag = 0; break;
 }
 }
 }

 sol = 0;
 for (i = 0; i < n - 1; i++)
 for (j = i + 1; j < n; j++)
 {
 if ((l[i][j] != 0) &&
 ((p[i][0] * 2 - p[j][0] < 1) || (p[i][1] * 2 - p[j][1] <
1) || (p[i][0] * 2 - p[j][0] > r) || (p[i][1] * 2 - p[j][1] > c)))
 {
 a = i;
 b = j;
 count = 2;
 while (l[a][b] != 0)
 {
 count++;
 k = a;
 a = b;
 b = l[k][a];
 l[k][a] = 0;

IOI 2002
Yong-In, Korea

Page 22 of 142

 }
 if (((p[b][0] * 2 - p[a][0] < 1) || (p[b][1] * 2 -
p[a][1] < 1) || (p[b][0] * 2 - p[a][0] > r) || (p[b][1] * 2 - p[a][1] > c)) &&
(count > sol))
 sol = count;
 }
 }
}

void WriteOutput()
{
 printf("%d\n", sol);
}

int main()
{
 ReadInput();
 Sort(0, n - 1);
 Run();
 WriteOutput();

 return 0;
}

IOI 2002
Yong-In, Korea

Page 23 of 142

Task 2: UTOPIA

Sergey Melnik, Jung-Heum Park,
Chong-Dae Park, Kee Moon Song,
Ian Munro

Utopia Divided

PROBLEM

The beautiful land of Utopia was once ravaged by war. When the hostilities subsided the
country was divided into four regions by a longitude (north-south line) and a latitude
(east-west line). The intersection of these lines became known as the point (0,0). All four
parts claimed the name Utopia, but as time went by they generally became known as
Utopia 1 (northeast), 2 (northwest), 3 (southwest) and 4 (southeast). A point in any of the
regions was identified by its distance east and its distance north of (0,0). These distances
could be negative; hence a point in Utopia 2 was designated by a (negative, positive) pair,
in Utopia 3 by a (negative, negative) pair, in Utopia 4 by (positive, negative) and in
Utopia 1 by a pair of positive numbers.

A major problem was that citizens were not permitted to cross borders. Fortunately, some
ingenious IOI contestants from Utopia developed a safe means of teleportation. The
machine requires code numbers, each of which can only be used once. Now the challenge
facing the team, and you, is to guide the teleporter from its initial position of (0,0) to the
regions of Utopia in the order requested. You don’t care where in a region you land, but
you will have a sequence of N region numbers that specify the regions in which the
teleporter is to land. You may be asked to land in the same region in two or more
consecutive stops. After leaving the initial (0,0) point, you must never land on a border.

You will receive as input a sequence of 2N code numbers and are to write them as a
sequence of N code pairs, placing a plus or a minus sign before each number. If you are
currently at the point (x,y) and use the code pair (+u,−v), you will be teleported to the
point (x+u, y−v). You have the 2N numbers, and you can use them in any order you like,
each with a plus or a minus sign.

Suppose you have code numbers 7, 5, 6, 1, 3, 2, 4, 8 and are to guide the teleporter
according to the sequence of region numbers 4, 1, 2 ,1. The sequence of code pairs
(+7,−1), (−5,+2), (−4,+3), (+8,+6) achieves this as it teleports you from (0,0) to the
locations (7,−1), (2,1), (−2,4) and (6,10) in that order. These points are located in Utopia
4, Utopia 1, Utopia 2, and Utopia 1, respectively.

Utopia 1
(+,+)

Utopia 4
(+, −)

Utopia 2
(−,+)

Utopia 3
(−, −)

(0,0)

IOI 2002
Yong-In, Korea

Page 24 of 142

TASK

You are given 2N distinct code numbers and a sequence of N region numbers indicating
where the teleporter is to land. Construct a sequence of code pairs from the given numbers
that guide the teleporter to go through the given region sequence.

INPUT

Your program is to read from standard input. The first line contains a positive integer N (1
≤ N ≤ 10000). The second line contains the 2N distinct integer code numbers (1≤ code
number ≤ 100000) separated by single spaces. The last line contains a sequence of N
region numbers, each of which is 1, 2, 3 or 4.

OUTPUT

Your program is to write to standard output. The output consists of N lines, each
containing a pair of code numbers each preceded by a sign character. These are codes
pairs that will direct the teleporter to the given region sequence. Note that there must be
no blank following a sign, but there must be a single space after the first code number.

If there are several solutions your program can output any one of them. If there are no
solutions your program should output the single integer 0.

EXAMPLE INPUTS AND OUTPUTS

Example 1: input output

Example 2: input output

SCORING

If your program outputs a correct answer for a test case within the time limit, then you get
full points for that test, and otherwise you get 0 points for the test case.

4
7 5 6 1 3 2 4 8
4 1 2 1

+7 -1
-5 +2
-4 +3
+8 +6

4
2 5 4 1 7 8 6 3
4 2 2 1

+3 -2
-4 +5
-6 +1
+8 +7

IOI 2002
Yong-In, Korea

Page 25 of 142

A. Solution

Jung-Heum Park, Ian Munro

The problem is two-dimensional, but is most easily solved as two one-dimensional
problems solved independently. Let us first concentrate on the one-dimensional problem.
The one dimensional problem is: Given N code numbers and a sequence of N region signs
(each of which is + or -), produce a sequence of N signed code values {xi} so that the sign
of Σi<k xi matches the ith region sign.

The basic approach is quite intuitive; though seeing that it works requires some care. We
start by sorting the N input code numbers into increasing order, and then assigning
alternating signs to them so that |xi| > |xi+1|, though xi >0 iff xi+1<0. (The sign of x1, and so
all the others is yet to be determined.) We then start at an appropriate place in the
“middle” of this sequence and move outward, using large numbers to change the sign of
the sum from that of the current situation, and small values to keep it the same. A few
definitions and lemmas make things much clearer:

Definition: A sequence of non-zero integers),,,(1 baa xxxX K+= , ba ≤ is an alternating
sequence if
 (i) |||||||| 21 baaa xxxx <<<< ++ L , and

(ii) for all i , bia ≤< , the sign of ix is different from the sign of 1−ix .
Here, || ax is the absolute value of ax .

Lemma 1. Let),,,(1 baa xxxX K+= be an alternating sequence. The sign of bx is equal
to the sign of ∑ ≤≤ bia ix , the total sum of elements in X .

Proof. We assume without loss of generality that bx is a positive integer. When the
number 1+− ab of elements in X is even (resp. odd), the partial sums 1++ aa xx ,

32 ++ + aa xx , K , bb xx +−1 (resp. ax , 21 ++ + aa xx , K , bb xx +−1) are positive, and thus the
total sum ∑ ≤≤ bia ix is positive. □

Example 1. The total sum of elements in an alternating sequence)6,5,2,1(+−+−=X is

26)(-52)(-1 +=+++ , which is positive.

Example 2. For an alternating sequence)7,6,5,4,3(+−+−+=X , the total sum of elements
in X is equal to 57)(-65)(-43)(+=+++++ , which is also positive.

We let),,,(1 baa sssS K+= , ba ≤ be a sequence of signs, plus and minus. A
sequence),,,('

1 baa iii xxxX K
+

= , ba ≤ is valid with respect to S if the sign of ∑ ≤≤ kja i j
x is

equal to ks for each k , bka ≤≤ .

IOI 2002
Yong-In, Korea

Page 26 of 142

Theorem 1. Let),,,(1 baa xxxX K+= , ba ≤ be an alternating sequence, and let
),,,(1 baa sssS K+= , ba ≤ be a sequence of signs. If the sign of bx is equal to bs , then

there exists a sequence),,,('
1 baa iii xxxX K
+

= such that
(i) },,,{},,,{ 11 baaiii xxxxxx

baa
KK +=

+
, and

(ii) 'X is valid with respect to S .

Proof. The proof is by induction on the number k of elements in X . When 1=k , it is
easy to see that XX =' is a valid sequence with respect to S . Now we assume that 2≥k .
We let bsSS −=1 , that is,),,,(111 −+= baa sssS K .
 Case 1. The sign of bx is equal to 1−bs .
Let axXX −=1 , that is,),,,(211 baa xxxX K++= , and let axt = .
 Case 2. The sign of 1−bx is equal to 1−bs .
Let bxXX −=1 , that is,),,,(111 −+= baa xxxX K , and let bxt = .

Note that 1X is an alternating sequence, and 1S is a sequence of signs such that the sign of
the last element in 1X is equal to 1−bs , the last element in 1S . Thus, by induction
hypothesis, there exits a valid sequence '1X with respect to 1S . Therefore,),'(' 1 tXX = is a
valid sequence with respect to S . □

Example 3. For an alternating sequence)8,7,5,4(+−+−=X , and a sequence of
signs),,,(+−−+=S , we have
),,(1 −−+=S ,)7,5,4(1 −+−=X ,
),(2 −+=S ,)7,5(2 −+=X ,
)(3 +=S ,)5(3 +=X .
Thus,
)5('3 +=X ,
)7,5('2 −+=X ,
)4,7,5('1 −−+=X ,
)8,4,7,5(' +−−+=X .

Example 4. For)3,2,1(−+−=X and),,(−−−=S ,
),(1 −−=S ,)3,2(1 −+=X ,
)(2 −=S ,)3(2 −=X .
Thus,
)3('2 −=X ,
)2,3('1 +−=X ,
)1,2,3(' −+−=X .

IOI 2002
Yong-In, Korea

Page 27 of 142

Now, we are ready to present an algorithm for the problem of Utopia Divided.

Algorithm Utopia_Divided

Step 1. // read input

1.1 read N ;
1.2 read N2 code numbers and partition them into A and B such that |||| BA = ;
1.3 read a sequence of regions),,,(21 NrrrR K= ;

Step 2. // find x -coordinates of code pairs
 2.1 find a sequence of signs),,,(21 NsssS K= such that

for all j , Nj ≤≤1 , ''+=js if 4,1=jr ; otherwise ''−=js .
 2.2 find an alternating sequence),,,(21 NxxxX K= from A such that
 the sign of Nx is equal to Ns .
 2.3 given X and S , find a valid sequence),,,('

21 Niii xxxX K= w.r.t. S
according to the proof of Theorem 1.

Step 3. // find y -coordinates of code pairs
 3.1 find a sequence of signs),,,(21 NsssS K= such that

for all j , Nj ≤≤1 , ''+=js if 2,1=jr ; otherwise ''−=js .
 3.2 find an alternating sequence),,,(21 NyyyY K= from B such that
 the sign of Ny is equal to Ns .
 3.3 given Y and S , find a valid sequence),,,('

21 Niii yyyY K= w.r.t. S
according to the proof of Theorem 1.

Step 4. // write output
 print),(,),,(),,(

2211 NN iiiiii yxyxyx K .

Theorem 2. Algorithm Utopia_Divided is correct, and its running time is)log(NNO .

Proof. The correctness of the algorithm is mainly due to Theorem 1. The complexity of
each step except Step 2.2 and 3.2 is)(NO , where Step 2.2 and 3.2 require)log(NNO
time for sorting. □

We do not know of a faster solution, nor do we have a proof that sorting is necessary for
this problem.

Another reasonable approach to the problem is backtracking. The approach is effective on
small inputs, fewer than 100 points or so.

IOI 2002
Yong-In, Korea

Page 28 of 142

B. Test Data Information

Kee Moon Song

The test data consists of 25 test cases, each generated mainly at random. Some region
sequences (i) consist of at most two regions such as 1 and 2, or (ii) visit regions in a
circular way. Some small inputs (9 test cases of size N ≤ 100 and 1 test case of size N =
500) are included so that inefficient but correct solutions can score some points.

Timing Tests for Utopia(sec.)

No. Optimal O(N)
In C/C++

Optimal O(N) in
Pascal BackTracking1 BackTracking2

1 < 0.1 < 0.1 < 0.1 < 0.1
2 < 0.1 < 0.1 < 0.1 < 0.1
3 < 0.1 < 0.1 < 0.1 < 0.1
4 < 0.1 < 0.1 < 0.1 < 0.1
5 < 0.1 < 0.1 < 0.1 < 0.1
6 < 0.1 < 0.1 < 0.1 < 0.1
7 < 0.1 < 0.1 < 0.1 < 0.1
8 < 0.1 < 0.1 < 0.1 < 0.1
9 < 0.1 < 0.1 0.15 0.28
10 < 0.1 < 0.1 < 0.1 < 0.1
11 < 0.1 < 0.1 2.57 3.77
12 < 0.1 < 0.1 > 20 > 20
13 < 0.1 < 0.1 > 20 > 20
14 < 0.1 < 0.1 > 20 > 20
15 < 0.1 < 0.1 > 20 > 20
16 < 0.1 < 0.1 > 20 > 20
17 < 0.1 < 0.1 > 20 > 20
18 < 0.1 < 0.1 > 20 > 20
19 < 0.1 < 0.1 > 20 > 20
20 < 0.1 < 0.1 > 20 > 20
21 < 0.1 < 0.1 > 20 > 20
22 < 0.1 < 0.1 > 20 > 20
23 < 0.1 < 0.1 > 20 > 20
24 < 0.1 < 0.1 > 20 > 20
25 < 0.1 < 0.1 > 20 > 20

IOI 2002
Yong-In, Korea

Page 29 of 142

Testing Data Description for Utopia

No. Size Description
1 N = 4 Example 2
2 N = 10 Key value : 1~20, Circular plane sweep
3 N = 10 Key value : Starting from 20, step 1 or 2, scrambled
4 N = 30 Key value : Starting from 30, step 1 or 2, scrambled
5 N = 30 Key value : Starting from 200, step 1 to 3, scrambled
6 N = 50 Key value : Starting from 1, step 1 to 3, scrambled
7 N = 50 Key value : Starting from 150, step 1 to 3, scrambled
8 N = 50 Key value : Starting from 300, step 1 to 4, scrambled

Visit plane 1 except last visit. At last, visit plane 3
9 N = 100 Starting from 1000, step 1 to 4, scrambled Circular plane visit
10 N = 500 Key value : 1, 3, 5, …, 1999, Circular plane visit
11 N = 700 Key value : Starting from 1, step 1 to 5, scrambled, Visit plane 1, 2 only

12 N = 1000 Key value : Starting from 4000, step 1 to 5, scrambled
13 N = 1500 Key value : Starting from 9000, step 1 to 5, scrambled
14 N = 2000 Key value : Starting from 15000, step 1 to 5, scrambled
15 N = 2500 Key value : Starting from 30000, step 1 to 5, scrambled
16 N = 3000 Key value : Starting from 1, step 1 to 7, scrambled, Visit plane 1, 4 only

17 N = 3500 Key value : Starting from 20000, step 1 to 7, scrambled
18 N = 4000 Key value : Starting from 30000, step 1 to 7, scrambled
19 N = 4500 Key value : Starting from 50000, step 1 to 7, scrambled
20 N = 5000 Key value : Starting from 60000, step 1 to 7, scrambled
21 N = 6000 Key value : Starting from 1, step 1 to 9, scrambled Visit plane 2, 4 only

22 N = 7000 Key value : Starting from 40000, step 1 to 7, scrambled
23 N = 8000 Key value : Starting from 50000, step 1 to 5, scrambled
24 N = 9000 Key value : Starting from 30000, step 1 to 6, scrambled
25 N = 10000 Key value : Starting from 80000~99999, scrambled

C. Grading
If a contestant’s program outputs the correct answer for a test case in the time limit, then
he/she receive 4 points for that test, and otherwise he/she gets 0 points for the test case.

D. Remark

The original one-dimensional problem entitled “Sign Representation” was proposed by
Sergey Melnik. It was extended to the two-dimensional problem by the Host Scientific
Committee.

IOI 2002
Yong-In, Korea

Page 30 of 142

E. Source Code for UTOPIA

Kee Moon Song

/*
TASK : Utopia
LANG : C

 Optimal solution - O(N)
*/

#include <stdio.h>
#include <stdlib.h>

#define MAX 10000

int num; // N
int data[2][MAX], dest[MAX];
int answer[MAX][2];

void getdata()
{
 int i;

 scanf ("%d", &num);
 for (i = 0; i < num; i++) scanf ("%d %d", &data[0][i], &data[1][i]);
 for (i = 0; i < num; i++) scanf ("%d", &dest[i]);
}

int compare(const void* a, const void* b) // subroutine for qsort
{
 return (*(int*)a > *(int*)b) ? 1:-1;
}

void preprocessing() // Sort input values
{
 qsort(data[0], num, sizeof(int), compare);
 qsort(data[1], num, sizeof(int), compare);
}

int check(int plane, int axis) // if axis=0, return x<0?
 // if axis=1, return y<0?
{
 if (axis == 0)
 return plane >= 2 && plane <= 3;
 else
 return plane >= 3;
}

void solveproblem()
{
 int bound[2][2];
 int *target, add;
 int i, loop;

 for (loop = 0; loop < 2; loop++)
 {
 // maintain that
 // x_n + x_(n-2) + ... + x_k(0 or 1) > x_(n-1) + x_(n-3) + ... +
x_l(1 or 0)
 bound[0][0] = check(dest[num - 1], loop) ^ (num % 2);
 bound[0][1] = num - 2 + check(dest[num - 1], loop);
 bound[1][0] = 1 - bound[0][0];
 bound[1][1] = num * 2 - 3 - bound[0][1];

 for (i = bound[0][0]; i <= bound[0][1]; i+= 2)
 data[loop][i] = -data[loop][i];

 for (i = num - 2; i >= 0; i--)
 {
 if (check(dest[i], loop) ^ check(dest[i + 1], loop))

IOI 2002
Yong-In, Korea

Page 31 of 142

 {
 target = (bound[0][1] > bound[1][1]) ?
&bound[0][1]:&bound[1][1];
 add = -2;
 }
 else
 {
 target = (bound[0][0] < bound[1][0]) ?
&bound[0][0]:&bound[1][0];
 add = 2;
 }

 answer[i + 1][loop] = data[loop][*target];
 *target += add;
 }

 answer[0][loop] = data[loop][(bound[0][0] > bound[0][1]) ?
bound[1][0]:bound[0][0]];
 }
}

void writeresult()
{
 int i;

 for (i = 0; i < num; i++)
 printf ("%+d %+d\n", answer[i][0], answer[i][1]);
}

int main()
{
 getdata();
 preprocessing();
 solveproblem();
 writeresult();

 return 0;
}

IOI 2002
Yong-In, Korea

Page 32 of 142

Task 3: XOR

Hwan Gue Cho, Chong-Dae Park
Jyrki Nummenmaa

XOR

PROBLEM

You are implementing an application for a mobile phone, which has a black-and-white
screen. The x-coordinates of the screen start from the left and the y-coordinates from the
top, as shown in the figures. For the application, you need various images, which are not
all of the same size. Instead of storing the images, you want to create the images using the
phone’s graphics library. You may assume that at the start of drawing an image, all pixels
of the screen are white. The only graphics operation in the phone’s library is
XOR(L,R,T,B), which will reverse the pixel values in the rectangle with top left coordinate
(L,T) and bottom right coordinate (R,B), where L stands for the left, T for the top, R for
the right and B for the bottom coordinate. Note that in some other graphics libraries the
order of the arguments is different.

As an example, consider the image in Figure-3. Applying XOR(2,4,2,6) to an all white
image gives the image in Figure-1. Applying XOR(3,6,4,7) to the image of Figure-1 gives
the image in Figure-2, and applying XOR(1,3,3,5) to the image in Figure-2 finally gives
the image in Figure-3.

 1 2 3 4 5 6 7 3 6 1 3
1
2
3 3
4 4
5 5
6
7 7

Figure-1 Figure-2 Figure-3

Given a set of black-and-white pictures, your task is to generate each picture from an
initially white screen using as few XOR calls as you can. You are given the input files
describing the images, and you are to submit files including the required XOR call
parameters, not a program to create these files.

INPUT

You are given 10 problem instances in the text files named xor1.in to xor10.in.
Each input file is organized as follows. The first line of an input file contains one integer
N, 5 ≤ N ≤ 2000, meaning that there are N rows and N columns in the image. The

IOI 2002
Yong-In, Korea

Page 33 of 142

remaining lines represent the rows of the image from top to bottom. Each line contains N
integers: the pixel values in the row from left to right. Each of these integers is either a 0
or a 1, where 0 represents a white pixel and 1 represents a black pixel.

OUTPUT

You are to submit 10 output files corresponding to the given input files.

The first line contains the text
#FILE xor I
where integer I is the number of the respective input file. The second line contains an
integer K: the number of XOR calls specified in the file. The following K lines represent
these calls from the first call to the last call to be executed. Each of these K lines contains
four integers: the XOR call parameters L, R, T, B in that order.

EXAMPLE INPUT AND OUTPUT

Example: xor0.in xor0.out

SCORING

If

 the XOR calls specified in your output file do not generate the required image, or
 the number of XOR calls specified in your output file is not K, or
 in your output file, K > 40000, or
 your output file contains such an XOR call that L>R or T>B, or
 your output file contains an XOR call which does not have positive coordinates,

or
 your output file contains an XOR call with a coordinate value exceeding N,

then your score is zero. Otherwise, your score is
1+9×CallsInBestAnswerOfAllContestants/CallsInYourAnswer.

The score is rounded to the first decimal place for each case. The total score is rounded off
to the nearest integer.

Suppose that you submit a solution with 121 XOR calls. If that is the best submission of
all contestants, your score is 10. If the best of the submitted solution of all contestants uses
98 XOR calls, your score becomes 1+9×98/121(=8.289…), which will be rounded to 8.3.

7
0 0 0 0 0 0 0
0 1 1 1 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 1 0
1 0 1 0 1 1 0
0 1 0 0 1 1 0
0 0 1 1 1 1 0

#FILE xor 0
3
2 4 2 6
3 6 4 7
1 3 3 5

IOI 2002
Yong-In, Korea

Page 34 of 142

A. Solution

Jung Gun Lim, Chong-Dae Park

A TWO-OPTIMAL SOLUTION FOR XOR

We start by giving some definitions, which will help us to explain our solution.

Definition 1. A grid point is an intersection point of two grid lines.

Definition 2. An imagecorner is grid point adjacent to an odd number of black pixels. If a
grid point p is an imagecorner, we say that the ic-value of p is 1 and we write ic(p)=1, and
if p is not an imagecorner, we say that the ic-value of p is 0 and we write ic(p)=0.

 Figure-1. An example image.

For example, in Figure-1, the grid point x is adjacent to four pixels, of which 1 is black
and 3 are white. This way, the grid point x is also an imagecorner. In total, there are 10
imagecorners in the image in Figure-1.

It is very easy to observe the following lemma.

Lemma 1. An image is all white if and only if there are no imagecorners.

We may now try to find a solution by working from the input image backward to an all
white image by doing XOR operations.

The following lemma is the base of our solution.

Lemma 2. Suppose we perform XOR(L,R,T,B). Let Q be the rectangle affected by
XOR(L,R,T,B), and let the grid point at left top corner of Q be a, at left bottom of Q be b,
at right bottom corner of Q be c, and at right top corner of Q be d. Then XOR(L,R,T,B)
will change the ic-value for a, b, c, and d, and the ic-values for all other grid points will
remain unchanged.

Proof. Exactly one pixel adjacent to each of a, b, c, and d will change their color. It
follows that the ic-values will change for these points.

Now consider the other grid points at the edge of Q. For all of these grid points, exactly
two pixels adjacent to them (the ones inside Q) will change their color. Therefore, the
number of odd pixels around those grid points does not change.

A grid point x.

IOI 2002
Yong-In, Korea

Page 35 of 142

Finally, consider the grid points inside Q. For all of these grid points, all four pixels
adjacent to them will change their color. Thus, the ic-values of these grid points will not
change and this completes our proof. �

When trying to reduce the number of corners, we would like to reduce them maximally
with each XOR call. However, it may not always be possible to choose an XOR call in
such a way that it changes the ic-value of all of the corners of the area affected by the
XOR call.

Lemma 3. If the image is not all white, it is always possible to choose such an XOR call
that the number of imagecorners is reduced by either two or four.

Proof. First, observe that at least two of the imagecorners are on the same line. For this,
examine the pixels in the topmost row which contains black pixels. There is an
imagecorner at the right top corner of the rightmost of these pixels and at the left top
corner of the leftmost of these pixels. These imagecorners can not be the same and they
are on the same line.

Next, observe that the imagecorners can not all be on the same line. This can be done
by first examining the topmost and bottommost imagecorners as above and finding out
that the topmost imagecorners are higher up than the bottommost imagecorners. Then
examine the leftmost and rightmost imagecorners and find out that they can not be on the
same vertical line. It follows that not all imagecorners can be on the same line.

We can now choose such a rectangle that three of its corners are imagecorners as
follows. We first choose the rightmost of the topmost imagecorners, and then some other
imagecorner of the rightmost imagecorners. The third imagecorner can be found as
follows. We start from the rightmost of the topmost imagecorners. Only the adjacent pixel
left and down from it is black and the other adjacent pixels are white. We travel the
gridpoints to the left one by one. At some point either the black pixels below end or black
pixels above start. If both of these happen at the same time, we find no imagecorner yet,
and the situation is reversed and we continue. When, as we go left, the pixel color changes
only above or below (this must eventually happen as at least we must eventually come to a
situation, where pixels both above and below are white), we encounter an imagecorner,
which we choose. These three imagecorners specify a valid rectangle.

Therefore, it is always possible to choose the XOR call in such a way that either four or
three of the grid points at the corners of the rectangle affected by the XOR are
imagecorners. Now if all four of these corners are imagecorners, then by Lemma 2 we
reduce the number of imagecorners by 4, and if exactly three of these corners are
imagecorners, then by Lemma 2 we reduce the number of imagecorners by 2 (we remove
three imagecorners and create one). This completes the proof. �

We now get the following 2-optimal method for solving XOR.

Algorithm 1. Two-optimal XOR

1. If there are black pixels in the image, find three imagecorners that can be used to
specify a rectangle, and use the respective XOR call. Go to 1.

2. Halt.

IOI 2002
Yong-In, Korea

Page 36 of 142

Theorem 1. Algorithm 1 is correct and 2-optimal.

Proof. We will first show the correctness of Algorithm 1. From Lemma 3 it follows that
as long as there are black pixels in the image, it is possible to find the required
imagecorners in Step 1 of the algorithm. Since each of the executions of Step 1 reduces
the number of imagecorners, Algorithm 1 will eventually halt and the image will be all
white. It follows that Algorithm 1 works correctly. �

(a) 2-optimal solution (Solution 1)

For each row i
 For each column j
 If point (i, j) is corner
 {
 Let k be the nearest corner right to the point (i, j) in row i
 Let l be the nearest corner below to the point (i, j) in column j
 XOR (j, k-1, i, l-1);
 }

(b) Randomized 2-optimal solution

Repeat
{
 Load initial data;
 While there are corner points
 {
 Choose a corner point (i,j) randomly
 Let k be a random corner in row i
 Let l be a random corner in column j
 XOR (j, k-1, i, l-1);
 }
} until there are no improvements

This randomized algorithm gives a chance of best solutions. If this algorithm runs several
times, we can choose the best among the solutions.

(c) Simple greedy algorithm (Solution 2)

For each row i
 For each column j
 If pixel (i, j) is black
 {
 Find the horizontally maximal black run from i.
 Assume pixels in (i,j) to (i,k-1) are all black.
 Find the vertically and maximal black run from i.
 Assume pixels in (i,j) to (j,l-1) are all black.
 // so rectangle region [i,k-1] × [j,l-1] is a black rectangle
 XOR (j, k-1, i, l-1);
 }

IOI 2002
Yong-In, Korea

Page 37 of 142

(d) Algorithm using Maximal Matching (Solution 3)

Solution 3 finds a set of “good” rectangles in a row. For a row there are even numbers of
corner points C1, C2, C3, …., Ck., where k=2N. Then we construct a complete weighted
graph G(V,E) from {Ci}. Let vi of V be Ci. And edge e(vi, vj) is given for every pair of vi,
vj. The weight of each edge, w(e), is given: w(vi, vj) = 1, if there is a rectangle(4 corners)
with vi, vj. Otherwise w(vi, vj) = 0. In the following figure, circle denotes the corner point
of given image. There are 6 corner points(vertices, namely v1, v2, v3, v4, v5, v6.) in the first
row. Since there is a rectangle with four corner points with (v1, v4) edge, (four corners
(1,1), (1,4), (3,1), (3,4) gives a rectangle), thus w(v1,v4) = 1. In a similar way we can set
w(v1,v3) = 0, w(v1,v6) = 1, w(v1,v7) = 0, w(v3,v7) = 0.

O
(1,1)

 O
(1,3)

O
(1,4)

 O
(1,6)

O
(1,7)

O

(1,2)

O O

 O O

O O

 O O

Then we compute the maximal matching of G(V,E), and remove all rectangles
corresponding to edges contained in maximal matching. This gives a better solution
compared to the performance of Solution 1 and Solution 2.

IOI 2002
Yong-In, Korea

Page 38 of 142

B. Test Data and 3 Solutions

Jung Gun Lim

Testing Data Description for XOR

No Size
(N) Description Solution 1

2-optimal
Solution 2

Greedy
Solution 3
Matching

Best of
IOI 2002

1 10 Sample input (shifted) 3 7 3 3
2 20 “IOI 2002 HELLO” 38 50 33 34
3 40 25 random boxes 34 74 27 28
4 700 100 random boxes 153 678 113 122
5 900 66 wide rectangles 74 1893 74 74
6 128 Modified IOI emblem 598 681 469 481
7 500 500 random boxes 907 15765 507 566
8 600 200 pattern(□ shape) 222 1540 200 200
9 1500 Two kinds of 500 boxes 526 3732 500 500
10 2000 1000 special rectangles 841 71851 866 810

C. REMARK

After we proposed this task, we have found that some games are similar to this XOR task.
The game is to ask a user to clear the given image(10 by 10) by only applying ‘cross’
shape XOR. It is interesting to see and play in the following web sites:
http://www.ida.net/users/housley/atag.htm
http://www.math.hkbu.edu.hk/~cstong/sci3510/xchess.html
http://www.math.hkbu.edu.hk/~cwyeung/xchess/

IOI 2002
Yong-In, Korea

Page 39 of 142

D. Source code for XOR (Solution3)

Jung Gun Lim

#include <cstdio>
#define MAXN 2000

typedef struct
{
 int rn;
 int cn;
} corner;

int n, count;
corner ct[MAXN+2][MAXN+2]; // data structure using linked list that contains
corners
int cor[MAXN+2], coc[MAXN+2]; // cor : corners on the row coc : corners on the
column
int b[MAXN+2][MAXN+2]; // input
int sols[MAXN*MAXN][4]; // solution
int mcount, msols[MAXN*MAXN][4]; // best solution found

void flip_corner (int r, int c) // if (r,c) is a corner, make it not
{ // otherwise, vice versa.
 int p;
 p=0;
 while (1)
 {
 if (ct[r][p].cn == c)
 {
 ct[r][p].cn = ct[r][c].cn;
 cor[r]--;
 break;
 }
 if (ct[r][p].cn > c)
 {
 ct[r][c].cn = ct[r][p].cn;
 ct[r][p].cn = c;
 cor[r]++;
 break;
 }
 p=ct[r][p].cn;
 }
 p=0;
 while (1)
 {
 if (ct[p][c].rn == r)
 {
 ct[p][c].rn = ct[r][c].rn;
 coc[c]--;
 break;
 }
 if (ct[p][c].rn > r)
 {
 ct[r][c].rn = ct[p][c].rn;
 ct[p][c].rn = r;
 coc[c]++;
 break;
 }
 p=ct[p][c].rn;
 }
}

void init_ct () // initializing corner table
{
 int i, j;
 for (i=1;i<=n+1;i++)
 {
 ct[0][i].rn = n+2;

IOI 2002
Yong-In, Korea

Page 40 of 142

 ct[0][i].cn = i+1;
 ct[i][0].rn = i+1;
 ct[i][0].cn = n+2;
 cor[i]=0;
 coc[i]=0;
 }
 for (i=1;i<=n+1;i++)
 for (j=1;j<=n+1;j++)
 {
 if ((b[i][j]+b[i-1][j]+b[i][j-1]+b[i-1][j-1])%2)
 {
 flip_corner (i, j);
 }
 }
 count=0;
}

void add_to_sol (int c1, int c2, int r1, int r2) // adding a rectangle to the
solution
{
 flip_corner (r1, c1);
 flip_corner (r2, c1);
 flip_corner (r1, c2);
 flip_corner (r2, c2);
 if (c1>c2) c1^=c2^=c1^=c2;
 if (r1>r2) r1^=r2^=r1^=r2;
 c2--;
 r2--;
 sols[count][0]=c1;
 sols[count][1]=c2;
 sols[count][2]=r1;
 sols[count][3]=r2;
 count++;
}

int links[MAXN+2], link[MAXN+2][MAXN+2]; // maximal matching algorithm
int match[MAXN+2], islinked[MAXN+2];

int traveled[MAXN+2];
int path[MAXN+2], pathlen;
int found;

void dfs (int k)
{
 int i, v;

 for (i=0;i<links[k];i++)
 {
 v=link[k][i];
 if (!traveled[v])
 {
 if (match[v]==-1)
 {
 path[pathlen]=v;
 pathlen++;
 found=1;
 return;
 }
 else
 {
 path[pathlen]=v;
 pathlen++;
 traveled[v]=1;
 path[pathlen]=match[v];
 pathlen++;
 dfs (match[v]);
 if (found) return;
 pathlen-=2;
 }
 }
 }
}

IOI 2002
Yong-In, Korea

Page 41 of 142

void matching (int elems)
{
 int i, flag, last;
 for (i=0;i<elems;i++)
 {
 match[i]=-1;
 }
 do
 {
 for (i=0;i<elems;i++)
 {
 traveled[i]=0;
 }
 flag=0;
 for (i=0;i<elems;i++)
 {
 if (match[i]==-1 && !traveled[i])
 {
 found=0;
 traveled[i]=1;
 path[0]=i;
 pathlen=1;
 dfs (i);
 if (found)
 {
 for (i=0;i<pathlen;i++)
 {
 if (i%2==0)
 {
 match[path[i]]=path[i+1];
 }
 else
 {
 match[path[i]]=path[i-1];
 }
 }
 flag=1;
 }
 }
 }
 } while (flag);
 last=-1;
 for (i=0;i<elems;i++)
 {
 if (match[i]!=-1)
 {
 islinked[i]=1;
 }
 else
 {
 islinked[i]=0;
 if (last==-1)
 {
 last=i;
 }
 else
 {
 match[last]=i;
 match[i]=last;
 last=-1;
 }

 }
 }
}

void destroy_row (int r) // removing all corners in the row
{
 int cols;
 int col[MAXN+2];
 int p, q, i, j;
 int min, minp;
 p=0;

IOI 2002
Yong-In, Korea

Page 42 of 142

 cols=0;
 while (ct[r][p].cn < n+2)
 {
 p=ct[r][p].cn;
 col[cols]=p;
 cols++;
 }
 for (i=0;i<cols;i++)
 links[i]=0;
 for (i=0;i<cols-1;i++)
// Could the pair of columns be destroyed with a rectangle of
 // 4 corners?
 {
 for (j=i+1;j<cols;j++)
 {
 p=ct[0][col[i]].rn;
 q=ct[0][col[j]].rn;
 while (p<n+2 && q<n+2)
 {
 if (p>q)
 {
 q=ct[q][col[j]].rn;
 }
 else if (p<q)
 {
 p=ct[p][col[i]].rn;
 }
 else
 {
 if (p!=r)
 {
 link[i][links[i]]=j;
 links[i]++;
 link[j][links[j]]=i;
 links[j]++;
 break;
 }
 p=ct[p][col[i]].rn;
 q=ct[q][col[j]].rn;
 }
 }
 }
 }
 matching (cols); // Maximum matching
 for (i=0;i<cols;i++)
 {
 if (match[i]>i)
 {
 if (islinked[i]) // Destroying matched pairs
 {
 p=ct[0][col[i]].rn;
 q=ct[0][col[match[i]]].rn;
 min=n+2;
 while (p<n+2 && q<n+2)
 {
 if (p>q)
 {
 q=ct[q][col[match[i]]].rn;
 }
 else if (p<q)
 {
 p=ct[p][col[i]].rn;
 }
 else
 {
 if (p!=r)
 {
 if (min>cor[p])
 {
 min=cor[p];
 minp=p;
 }
 }

IOI 2002
Yong-In, Korea

Page 43 of 142

 p=ct[p][col[i]].rn;
 q=ct[q][col[match[i]]].rn;
 } // prefers the row that contains least column
 }
 add_to_sol (col[i], col[match[i]], r, minp);
 }
 }
 }
 for (i=0;i<cols;i++)
 {
 if (match[i]>i)
 {
 if (!islinked[i]) // not matched pairs
 {
 min=n+1;
 p=ct[0][col[i]].rn;
 while (p<n+2)
 {
 if (cor[p]<min && p!=r)
 {
 min=cor[p];
 minp=p;
 }
 p=ct[p][col[i]].rn;
 }
 p=ct[0][col[match[i]]].rn;
 while (p<n+2)
 {
 if (cor[p]<min && p!=r)
 {
 min=cor[p];
 minp=p;
 }
 p=ct[p][col[match[i]]].rn;
 }
 add_to_sol (col[i], col[match[i]], r, minp);
 }
 }
 }
}

void destroy_col (int c) // destroying all corners in the corner; the same
structure with destroy_row's.
{
 int rows;
 int row[MAXN+2];
 int p, q, i, j;
 int min, minp;
 p=0;
 rows=0;
 while (ct[p][c].rn < n+2)
 {
 p=ct[p][c].rn;
 row[rows]=p;
 rows++;
 }
 for (i=0;i<rows;i++)
 links[i]=0;
 for (i=0;i<rows-1;i++)
 {
 for (j=i+1;j<rows;j++)
 {
 p=ct[row[i]][0].cn;
 q=ct[row[j]][0].cn;
 while (p<n+2 && q<n+2)
 {
 if (p>q)
 {
 q=ct[row[j]][q].cn;
 }
 else if (p<q)
 {
 p=ct[row[i]][p].cn;

IOI 2002
Yong-In, Korea

Page 44 of 142

 }
 else
 {
 if (p!=c)
 {
 link[i][links[i]]=j;
 links[i]++;
 link[j][links[j]]=i;
 links[j]++;
 break;
 }
 p=ct[row[i]][p].cn;
 q=ct[row[j]][q].cn;
 }
 }
 }
 }
 matching (rows);
 for (i=0;i<rows;i++)
 {
 if (match[i]>i)
 {
 if (islinked[i])
 {
 p=ct[row[i]][0].cn;
 q=ct[row[match[i]]][0].cn;
 min=n+2;
 while (p<n+2 && q<n+2)
 {
 if (p>q)
 {
 q=ct[row[match[i]]][q].cn;
 }
 else if (p<q)
 {
 p=ct[row[i]][p].cn;
 }
 else
 {
 if (p!=c)
 {
 if (min>coc[p])
 {
 min=coc[p];
 minp=p;
 }
 }
 p=ct[row[i]][p].cn;
 q=ct[row[match[i]]][q].cn;
 }
 }
 add_to_sol (c, minp, row[i], row[match[i]]);
 }
 }
 }
 for (i=0;i<rows;i++)
 {
 if (match[i]>i)
 {
 if (!islinked[i])
 {
 min=n+1;
 p=ct[row[i]][0].cn;
 while (p<n+2)
 {
 if (coc[p]<min && p!=c)
 {
 min=coc[p];
 minp=p;
 }
 p=ct[row[i]][p].cn;
 }
 p=ct[row[match[i]]][0].cn;

IOI 2002
Yong-In, Korea

Page 45 of 142

 while (p<n+2)
 {
 if (coc[p]<min && p!=c)
 {
 min=coc[p];
 minp=p;
 }
 p=ct[row[match[i]]][p].cn;
 }
 add_to_sol (c, minp, row[i], row[match[i]]);
 }
 }
 }
}

void update_sol () // updating the best solution
{
 int i, j;
 if (mcount>count)
 {
 mcount=count;
 for (i=0;i<mcount;i++)
 for (j=0;j<4;j++)
 msols[i][j]=sols[i][j];
 }
}

void delete_min_row_or_col () // destroying the row or the column that contains
least corners
{
 int mins, minp, i, isrow;
 init_ct ();
 while (1)
 {
 mins=n+1;
 for (i=1;i<=n+1;i++)
 {
 if (mins>cor[i] && cor[i])
 {
 mins=cor[i];
 minp=i;
 isrow=1;
 }
 if (mins>coc[i] && coc[i])
 {
 mins=coc[i];
 minp=i;
 isrow=0;
 }
 }
 if (mins==n+1) break;
 if (isrow)
 {
 destroy_row (minp);
 }
 else
 {
 destroy_col (minp);
 }
 }
 update_sol ();
}

void delete_one_by_one ()
{
 int i;
 init_ct ();
 for (i=1;i<=n+1;i++) // destroying the top row first
 {
 if (cor[i]!=0) destroy_row (i);
 }
 update_sol ();

IOI 2002
Yong-In, Korea

Page 46 of 142

 init_ct ();
 for (i=1;i<=n+1;i++) // the bottom row
 {
 if (coc[i]!=0) destroy_col (i);
 }
 update_sol ();
 init_ct ();
 for (i=n+1;i>=1;i--) // the left column
 {
 if (cor[i]!=0) destroy_row (i);
 }
 update_sol ();
 init_ct ();
 for (i=n+1;i>=1;i--) // the right column
 {
 if (coc[i]!=0) destroy_col (i);
 }
 update_sol ();
}

void read_data()
{
 int i, j;
 scanf ("%d", &n);
 for (i=0;i<n;i++)
 {
 for (j=0;j<n;j++)
 {
 scanf ("%d", &b[i+1][j+1]);
 }
 }
 for (i=0;i<=n+1;i++)
 {
 b[i][0]=0;
 b[i][n+1]=0;
 b[0][i]=0;
 b[n+1][i]=0;
 }
 mcount=0x7fffffffl;
}

void print (char *ID)
{
 int i;
 printf ("#FILE xor %s\n", ID);
 printf ("%d\n", count);
 for (i=0;i<mcount;i++)
 {
 printf ("%d %d %d %d\n", msols[i][2], msols[i][3], msols[i][0],
msols[i][1]);
 }
 printf ("%d\n", mcount);
}

int main(int argc, char **argv)
{
 read_data ();
 delete_min_row_or_col ();
 delete_one_by_one ();
 print (argv[1]);
 return 0;
}

IOI 2002
Yong-In, Korea

Page 47 of 142

E. Source code for XOR (SensQ Award Winner)

The contestant Tiankai Liu gets 100 points(99.7 pts, exactly) in Task XOR. His solution is
the best except the test case 3. (his solution uses 29 XORs. The best one uses 28 XORs.)

Tiankai LIU (USAC03)

#include <stdio.h>
#include <assert.h>

int N, K=0, Waas=0;
int color[2000][2000];
int needy[2001][2001] = {0};

FILE *fin, *fout;

void get_needy (int i, int j)
{
 if (i > 0) {
 if (j > 0)
 needy[i][j] += color[i-1][j-1];
 if (j < N)
 needy[i][j] += color[i-1][j];
 }
 if (i < N) {
 if (j > 0)
 needy[i][j] += color[i][j-1];
 if (j < N)
 needy[i][j] += color[i][j];
 }
 needy[i][j] &= 1;
}

void use_rect (int i, int j, int ii, int jj)
{
 fprintf (fout, "%d %d %d %d\n", j+1, jj, i+1, ii);
 // notice the tricky +1 and lack of +1
 K++;
 needy[i][j] ^= 1;
 needy[i][jj] ^= 1;
 needy[ii][j] ^= 1;
 needy[ii][jj] ^= 1;
}

int main (int argc, char *argv[])
{
 int i, j, ii, jj, r, c;
 int ninrow, nincol;
 int inrow[2000], incol[2000];
 bool found;

 // get input and figure out what is needy
 fin = fopen (argv[1], "r");
 assert (fin);
 fscanf (fin, "%d", &N);
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 fscanf (fin, "%d", &color[i][j]);
 get_needy (i, j);
 }
 get_needy (i, N);
 }
 for (j = 0; j <= N; j++)
 get_needy (N, j);
 fclose (fin);

IOI 2002
Yong-In, Korea

Page 48 of 142

 fout = fopen (argv[2], "w");
 assert (fout);

 // try to do stuff
 for (i = 0; i <= N; i++) {
 for (j = 0; j <= N; j++) {
 if (!needy[i][j])
 continue;

 assert (i < N);
 assert (j < N);

 ninrow = 0;
 for (jj = j+1; jj <= N; jj++)
 if (needy[i][jj])
 inrow[ninrow++] = jj;

 assert (ninrow & 1); // should be odd

 nincol = 0;
 for (ii = i+1; ii <= N; ii++) {
 if (needy[ii][j])
 incol[nincol++] = ii;
 }

 assert (nincol & 1);

 found = 0;
 for (c = 0; !found && c < nincol; c++) {
 for (r = 0; !found && r < ninrow; r++) {
 if (needy[incol[c]][inrow[r]]) {
 // found the perfect rectangle
 found = 1;
 use_rect (i, j, incol[c], inrow[r]);
 }
 }
 }

 if (!found) {
 // no perfect rectangle, go for inferior stuff
 // printf ("Waa. ");
 Waas++;
 use_rect (i, j, incol[0], inrow[0]);
 }
 }
 }

 // sanity check
#ifndef NDEBUG
 for (i = 0; i <= N; i++)
 for (j = 0; j <= N; j++)
 assert (needy[i][j] == 0);
#endif
 fclose (fout);

 // give some feedback
 printf ("Number of rectangles used: %d; Number of Waas: %d; Score
>= %g\n\n", K, Waas, 1 + 9 * (double) (K * 4 - Waas) / (K * 4));

 return 0;
}

IOI 2002
Yong-In, Korea

Page 49 of 142

Result of Day1 Competition

A. Summary

Task Name Submission # of full
scores Average Standard

deviation
FROG 251 24 51.97 30.97

UTOPIA 209 7 16.21 21.56
XOR 257 1 25.43 18.96

Note: The averages and standard deviations are calculated from submitted solutions only.

B. Contestants’ Scores (sorted to X-axis)

frog Submit: 251
 Average: 51.97
 # Full Score: 24

0

20

40

60

80

100

120

0 50 100 150 200 250 300

frog Submit: 251
 Average: 51.97
 # Full Score: 24

0

20

40

60

80

100

120

0 50 100 150 200 250 300

IOI 2002
Yong-In, Korea

Page 50 of 142

utopia Submit : 209
 Average : 16.21
 # Full Score : 7

0

20

40

60

80

100

120

0 50 100 150 200 250

utopia Submit : 209
 Average : 16.21
 # Full Score : 7

0

20

40

60

80

100

120

0 50 100 150 200 250

xor Submit : 257
 Average : 25.43
 # Full Score : 1

0

20

40

60

80

100

120

0 50 100 150 200 250 300

xor Submit : 257
 Average : 25.43
 # Full Score : 1

0

20

40

60

80

100

120

0 50 100 150 200 250 300

IOI 2002
Yong-In, Korea

Page 51 of 142

 DAY2

TASK OVERVIEW SHEET / DAY-2

TASK BATCH BUS RODS

Linux ~/batch ~/bus ~/rods Task
material
directory WinXP C:\IOI\batch C:\IOI\bus C:\IOI\rods

Time limit per test 0.1 secs 4 secs 1 sec
Memory limit 32 MB 32 MB 32 MB

C and
C++

-O2 –static
–lm

-O2 –static
–lm

-O2 –static
–lm Compiler

options Pascal -So –O2 –XS -So –O2 –XS -So –O2 –XS
Number of tests 20 20 20
Maximum points per
test 5 5 5

Maximum total points 100 100 100

Program header
comment when using C

/*
TASK: batch
LANG: C
*/

/*
TASK: bus
LANG: C
*/

/*
TASK: rods
LANG: C
*/

Program header
comment when using
C++

/*
TASK: batch
LANG: C++
*/

/*
TASK: bus
LANG: C++
*/

/*
TASK: rods
LANG: C++
*/

Program header
comment when using
Pascal

{
TASK: batch
LANG: PASCAL
}

{
TASK: bus
LANG: PASCAL
}

{
TASK: rods
LANG: PASCAL
}

Submission is accepted,
if;

Example 1 is
solved.

Example 1 is
solved.

Example is
processed.

IOI 2002
Yong-In, Korea

Page 52 of 142

Task 1: BATCH

Hee Chul Kim, Jyrki Nummenmaa

Batch Scheduling

PROBLEM

There is a sequence of N jobs to be processed on one machine. The jobs are numbered
from 1 to N, so that the sequence is 1, 2, …, N. The sequence of jobs must be partitioned
into one or more batches, where each batch consists of consecutive jobs in the sequence.
The processing starts at time 0. The batches are handled one by one starting from the first
batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch
b is handled before batch c. The jobs in a batch are processed successively on the
machine. Immediately after all the jobs in a batch are processed, the machine outputs the
results of all the jobs in that batch. The output time of a job j is the time when the batch
containing j finishes.

A setup time S is needed to set up the machine for each batch. For each job i, we know its
cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1, … ,
x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1
+ … + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same
time. If the output time of job i is Oi, its cost is Oi × Fi. For example, assume that there are
5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) =
(3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the
output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10,
30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs.
The total cost for the example partitioning above is 153.

You are to write a program which, given the batch setup time and a sequence of jobs with
their processing times and cost factors, computes the minimum possible total cost.

INPUT

Your program reads from standard input. The first line contains the number of jobs N, 1 ≤
N ≤ 10000. The second line contains the batch setup time S which is an integer, 0 ≤ S ≤ 50.
The following N lines contain information about the jobs 1, 2, …, N in that order as
follows. First on each of these lines is an integer Ti, 1 ≤ Ti ≤ 100, the processing time of
the job. Following that, there is an integer Fi, 1 ≤ Fi ≤ 100, the cost factor of the job.

OUTPUT

Your program writes to standard output. The output contains one line, which contains one
integer: the minimum possible total cost.

IOI 2002
Yong-In, Korea

Page 53 of 142

EXAMPLE INPUTS AND OUTPUTS

Example 1: input output

Example 2: input output

Example 2 is the example in the text.

REMARK

For each test case, the total cost for any partitioning does not exceed 231 − 1.

SCORING

If your program outputs the correct answer for a test case within the time limit, then you
get full points for the test case, and otherwise you get 0 points.

A. Solutions

This problem can be solved using dynamic programming. Let Ci be the minimum total
cost of all partitionings of jobs Ji, Ji +1, … , JN into batches. Let Ci(k) be the minimum total
cost when the first batch is selected as {Ji, Ji +1, … , Jk-1}. That is, Ci(k) = Ck + (S + Ti +
Ti+1 + … + Tk-1) * (Fi + Fi+1 + … + FN).

Then we have that
 Ci = min { Ci(k) | k = i+1, … , N+1} for 1 ≤ i ≤ N,
 and CN+1 = 0.

(a) O(N2) Time Algorithm

The time complexity of the above algorithm is O(N2).

5
1
1 3
3 2
4 3
2 3
1 4

153

2
50
100 100
100 100

45000

IOI 2002
Yong-In, Korea

Page 54 of 142

(b) O(N) Time Algorithm

Investigating the property of Ci(k), P. Bucker[1] showed that this problem can be solved in
O(N) time as follows.

From Ci(k) = Ck + (S + Ti + Ti+1 + … + Tk-1) * (Fi + Fi+1 + … + FN), we have that
for i < k < l,

Ci(k) ≤ Ci(l) ⇔ Cl − Ck + (Tk + Tk+1 + … + Tl-1) * (Fi + Fi+1 + … + FN) ≥ 0
 ⇔ (Ck − Cl) / (Tk + Tk+1 + … + Tl-1) ≤ (Fi + Fi+1 + … + FN)

Let g(k,l) = (Ck − Cl) / (Tk + Tk+1 + … + Tl-1) and f(i) = (Fi + Fi+1 + … + ON)

Property 1: Assume that g(k,l) ≤ f(i) for 1 ≤ i < k < l. Then Ci(k) ≤ Ci(l)
Property 2: Assume g(j,k) ≤ g(k,l) for some 1 ≤ j < k < l ≤ n. Then for each i with 1 ≤ i <
j, Ci(j) ≤ Ci(k) or Ci(l) ≤ Ci(k).

Property 2 implies that if g(j,k) ≤ g(k,l) for j < k < l, Ck is not needed for computing Fi.
Using this property, a linear time algorithm can be designed, which is given in the
following.

Algorithm Batch

The algorithm calculates the values Ci for i = N down to 1. It uses a queue-like list Q = (ir,
ir-1, … , i2, i1) with tail ir and head i1 satisfying the following properties:

ir < ir-1 < … < i2 < i1 and
g(ir, ir-1) > g(ir-1, ir-2) > ….. > g(i2, i1) -------- (1)

When Ci is calculated,
1. // Using f(i), remove unnecessary element at head of Q.

 If f(i) ≥ g(i2,i1), delete i1 from Q since for all h ≤ i, f(h) ≥ f(i) ≥ g(i2,i1) and Ch(i2) ≤
Ch(i1) by Property 1.

Continue this procedure until for some t ≥ l, g(ir, ir-1) > g(ir-1, ir-2) > ….. > g(it+1, it) >
f(i).

Then by Property 1, Ci(iv+1) > Ci(iv) for v = t, … , r-1 or
 r = t and Q contains only it.
Therefore, Ci(it) is equal to min{Ci(k) | k = i+1, … , N+1}.

2. // When inserting i at the tail of Q, maintain Q for the condition (1) to be satisfied.
 If g(i, ir) ≤ g(ir, ir-1), delete ir from Q by Property 2.

Continue this procedure until g(i, iv) > g(iv, iv-1).
 Append i as a new tail of Q.

Analysis

Each i is inserted into Q and deleted from Q at most once. In each insertion and deletion, it
takes a constant time. Therefore the time complexity is O(N).

IOI 2002
Yong-In, Korea

Page 55 of 142

B. Test Data Information and Grading

Kee Moon Song

In total, 20 test cases are prepared and tested. Each test case is of 5 credits. Among them,
19 test cases are randomly generated so that negative integer by overflow does not occur
during computing Fi. The remaining 1 test case is that setup time and all processing times
and cost factors are 1.
The test case is mainly prepared to distinguish whether the competitors design an efficient
algorithm or not. Among 20 test cases, algorithm by enumeration may solve for three ones
within the given time limit, and an O(N2) time algorithm may solve for 14 test cases
within the given time limit. If the competitors submit a correct O(N) time algorithm, they
will get 100 credits.

Timing Test for BATCH
Optimal in

C/C++
Optimal in

Pascal
SubOpt. in

C/C++
SubOpt. in

Pascal No.
O(N) O(N) O(N2) O(N2)

1 < 0.01 < 0.01 < 0.01 < 0.01
2 < 0.01 < 0.01 < 0.01 < 0.01
3 < 0.01 < 0.01 < 0.01 < 0.01
4 < 0.01 < 0.01 < 0.01 < 0.01
5 < 0.01 < 0.01 < 0.01 < 0.01
6 < 0.01 < 0.01 < 0.01 < 0.01
7 < 0.01 < 0.01 < 0.01 < 0.01
8 < 0.01 < 0.01 < 0.01 < 0.01
9 < 0.01 < 0.01 < 0.01 < 0.01
10 < 0.01 < 0.01 < 0.01 < 0.01
11 < 0.01 < 0.01 < 0.01 < 0.01
12 < 0.01 < 0.01 < 0.01 0.02
13 < 0.01 < 0.01 < 0.01 0.04
14 < 0.01 < 0.01 0.03 0.06
15 < 0.01 < 0.01 0.23 0.87
16 < 0.01 < 0.01 0.3 1.19
17 < 0.01 < 0.01 0.33 1.3
18 < 0.01 < 0.01 0.39 1.37
19 < 0.01 < 0.01 0.41 1.52
20 < 0.01 < 0.01 0.45 1.81

IOI 2002
Yong-In, Korea

Page 56 of 142

Testing Data Description for BATCH

No. Size(N) Description Solution
1 N = 5 Example 2 153
2 N = 10 Randomly generated data 170820
3 N = 15 Randomly generated data 322305
4 N = 20 Randomly generated data 596614
5 N = 30 Randomly generated data 1414590
6 N = 50 Randomly generated data 3900980
7 N = 100 Randomly generated data 12636575
8 N = 200 Randomly generated data 50649757
9 N = 300 Randomly generated data 124220878
10 N = 500 Each time & priority = 1 135794
11 N = 700 Randomly generated data 635041453
12 N = 1000 Setup time = 0 331524426
13 N = 1500 Randomly generated data 744367663
14 N = 2000 Randomly generated data 863732491
15 N = 7000 Randomly generated data 757615479
16 N = 8000 Randomly generated data 1003361707
17 N = 8500 Randomly generated data 915744544
18 N = 9000 Randomly generated data 1042629359
19 N = 9500 Randomly generated data 925702728
20 N = 10000 Randomly generated data 1025371921

C. Variations

There are other several variations of the batch problem [2].

(1) If there is no restriction on the scheduled sequence of jobs, that is, a batch consists of
arbitrary set of jobs, then the problem is NP-hard.

(2) If the cost factor of all jobs are all 1 and there is no restriction on the scheduled
sequence of jobs, then the problem can be solved in O(N log N) time.

(3) If all jobs have the same processing time and there is no restriction on the scheduled
sequence of jobs, then the problem can be solved in O(N log N) time.

D. References

[1] P. Brucker, Efficient algorithm for some path problems, Discrete Applied
Mathematics 62, pp. 77-85, 1995.
[2] S. Albers and P. Brucker, The complexity of one-machine batching problems,
Discrete Applied Mathematics 47, pp. 87-107, 1993.

IOI 2002
Yong-In, Korea

Page 57 of 142

E. Source Code for BATCH

Kee Moon Song

/*
TASK : Batch
LANG : C

 Optimal solution - O(N) with Dynamic programming
*/

#include <stdio.h>

#define MAX 10000

int num, stime, answer; // # of Jobs, Setup Time, answer
int data[MAX][2]; // processing time & priority
int queue[MAX + 1], table[MAX + 1]; // tables for DP

void getdata()
{
 int i;

 scanf ("%d %d", &num, &stime);

 for (i = 0; i < num; i++)
 scanf ("%d %d", &data[i][0], &data[i][1]);
}

void preprocessing()
{
 int i;

 for (i = 1; i < num; i++)
 {
 data[i][0] += data[i - 1][0];
 data[i][1] += data[i - 1][1];
 }
}

int func(int k)
{
 return data[num - 1][1] - (k ? data[k - 1][1] : 0);
}

int cost(int i, int j
{
 return func(i) * (stime + data[j - 1][0] - (i ? data[i - 1][0] : 0));
}

int delta(int i, int j)
{
 return (table[i] - table[j]) / (data[j - 1][0] - (i ? data[i - 1][0] :
0));
}

void solveproblem
{
 int head = 0, tail = 1;
 int i, j;

 queue[0] = num;
 table[num] = 0;

 for (j = num - 1; j >= 0; j
 {
 for (i = head; i < tail - 1; i++)

IOI 2002
Yong-In, Korea

Page 58 of 142

 if (func(j) > delta(queue[i + 1], queue[i])) head++;
 else break;

 table[j] = table[queue[head]] + cost(j, queue[head]);

 for (i = tail - 1; i > head; i--)
 if (delta(j, queue[i]) <= delta(queue[i], queue[i - 1]))
 tail--;
 else break;

 queue[tail++] = j;
 }
 answer = table[0];
}

void outputs()
{
 printf ("%d\n", answer);
}

int main()
{
 getdata();
 preprocessing();
 solveproblem();
 outputs();

 return 0;
}

IOI 2002
Yong-In, Korea

Page 59 of 142

Task 2: BUS

Chan-Su Shin, Djura Paunic

Bus Terminals

PROBLEM

Yong-In city plans to build a bus network with N bus stops. Each bus stop is at a street
corner. Yong-In is a modern city, so its map is a grid of square blocks of equal size. Two
of these bus stops are to be selected as hubs H1 and H2. The hubs will be connected to
each other by a direct bus line and each of the remaining N - 2 bus stops will be connected
directly to either H1 or H2 (but not to both), but not to any other bus stop.

The distance between any two bus stops is the length of the shortest possible route
following the streets. That is, if a bus stop is represented as (x, y) with x-coordinate x and
y-coordinate y, then the distance between two bus stops (x1, y1) and (x2, y2) is

2121 yyxx −+− . If bus stops A and B are connected to the same hub H1, then the length of
the route from A to B is the sum of the distances from A to H1 and from H1 to B. If bus
stops A and B are connected to different hubs, e.g., A to H1 and B to H2, then the length of
the route from A to B is the sum of the distances from A to H1, from H1 to H2, and from H2
to B.

The planning authority of Yong-In city would like to make sure that every citizen can
reach every point within the city as quickly as possible. Therefore, city planners want to
choose two bus stops to be hubs in such a way that in the resulting bus network the length
of the longest route between any two bus stops is as short as possible.

One choice P of two hubs and assignments of bus stops to those hubs is better than
another choice Q if the length of the longest bus route is shorter in P than in Q. Your task
is to write a program to compute the length of this longest route for the best choice P.

INPUT

Your program is to read from standard input. The first line contains one positive integer N,
2 ≤ N ≤ 500, the number of bus stops. Each of the remaining N lines contains the x-
coordinate followed by the y-coordinate of a bus stop. The x- and y-coordinates are
positive integers ≤ 5000. No two bus stops are at the same location.

OUTPUT

Your program is to write to standard output. The output contains one line with a single
positive integer, the minimum length of the longest bus route for the input.

IOI 2002
Yong-In, Korea

Page 60 of 142

EXAMPLE INPUTS AND OUTPUTS

Example 1: input output

Example 2: input output

The following figures show the bus networks for the inputs given above. If in Example 1
bus stops 3 and 4 are selected as hubs then the longest route is either between bus stops 2
and 5 or between bus stops 2 and 1. There is no better choice for the hubs, and the answer
is 20.

For the bus network in Example 2, if bus stops 5 and 6 are selected as hubs then the
longest route is obtained between bus stops 2 and 7. There is no better choice for the hubs,
and the answer is 25.

Bus network for Example 1 Bus network for Example 2

SCORING

If your program outputs the correct answer for a test case within the time limit, then you
get full points for that test case, and otherwise you get 0 points for that case.

y

2

3

4

6

1

7

x5 10 15

5

10

1
2

3
4

5

5 10

y

5

10

x

6 5

7
7 9
10 9
5 3
1 1
7 2
15 6
17 7

25

6
1 7
16 6
12 4
4 4
1 1
11 1

20

IOI 2002
Yong-In, Korea

Page 61 of 142

A. Solution

(a) Algorithm Description

The solution is based on the algorithm, running in O(N3) time, presented in [1]. Recently,
it is slightly improved in [2], but its implementation is too complicated to accept for the
competition, so we use the algorithm in [1] as a solution.

The diameter of a bus network is the longest length of the route between any two bus
stops in the bus network. Our goal is to find the minimum value of the diameters over all
possible choices of the hubs and assignments of bus stops. As did in [1], we consider two
cases separately. For it, we need some notations. Let D1 be the minimum value of the
longest length between two bus stops which are connected through only one hub over all
possible choice of one hub, and let D2 be the minimum value of the longest length
between two bus stops which are connected through both two hubs over all possible
choice of two hubs and the corresponding assignments of bus stops. We can now find the
diameter in the following way presented in [1]. First, compute D1 and D2. Next, output the
minimum of D1 and D2 as the minimum diameter of the entire network.

First we will explain the computation of D1. If a point p will be served as the hub through
which the longest route passes, the longest length is d(p, q) + d(p, r), where the points q
and r is the farthest and the second farthest ones from p, respectively. Then D1 = minp
{ d(p, q) + d(p, r) } over all points p of the input. This can be obtained in O(N2) time
because the farthest and second farthest bus stops for each point p are easily found in O(N)
time. Of course, we can reduce the time complexity to O(N log N) by using the second-
order farthest Voronoi diagram. But we simply implement the O(N2)-time algorithm
because the complexity does not affect the total complexity of O(N3).

Second we will explain how to compute D2 with a simple example. Note that in this case
the longest route between two bus stops will pass both two hubs H1 and H2.

In Figure 1 it shows a distribution of 7 bus stops in Yong-In. We consider all pairs of bus
stops of the input as possible two hubs H1 and H2, and select the pair of the bus stops that
gives a minimum diameter. Let at the beginning D2 be sufficiently large (e.g., maxint).
Consider now fixed two hubs H1 and H2. Each of the remaining N – 2 points will be
initially connected to one of two hubs, say H1. Sort the remaining N – 2 points in the array

7 5 4

y

2

1

6

3
x 5 10 15 20

5

10

Figure 1

IOI 2002
Yong-In, Korea

Page 62 of 142

P in non-decreasing order according to the distance from the hub H1(Figure 2).

Denote by r1 = d(H1, P[N-3]), r2 = d(H2, P[n-2]) and d12 = d(H1, H2). If r1 + d12 + r2 < D2,
then the point P[N-2] is connected to the hub H2 and set D2 to the new value D2 = r1 + d12
+ r2. Figure 3 represents this step, r1 = d(H1, P[N-3]) = d(H1, P[4]) = 10, r2 = d(H2, P[N-
2]) = (H2, P[5]) = 3, d12 = d(H1, H2) = 12, so D2 = r1 + d12 + r2 = 10 + 12 + 3 = 25.

Now we repeat the same procedure with r1 = d(H1, P[N-4]), r2 = d(H2, P[N-3]), same d12 =
d(H1, H2), and get r1 + d12 + r2 = d(H1, P[3]) + d12 + d(H2, P[4]) = 7 + 12 + 8 = 27. Since
we got the new distance which is greater than the previous diameter, the value D2 remains
unchanged, so D2 still has value 25. (If 25 is turned out to be the minimum of D2 at the
end of the procedure, the point P[4] shall be connected to H1 although its distance to H2 is
smaller than the distance from H1.) This situation is represented in Figure 4 where the
point P[4] is connected with a thin line to H2 which is shorter than the distance from H1 to
P[4].

This procedure is repeated by decreasing the index of the array P one by one until the
index 1 is reached. For the example, the minimum value of D2 is 25 after the procedure
and the corresponding network is shown in Figure5 below.

P5

P4 P3

d12

y

P1

P2

H2

H1
5 10 15 20

5

10

P5

P4 P3

P5

P4 P3

y

P1

P2

H2

H1
x 5 10 15 20

5

10

x

y

P1

P2

H2

H1
x 5 10 15 20

5

10

Figure 2

Figure 3

Figure 4

IOI 2002
Yong-In, Korea

Page 63 of 142

(b) Seemingly nice heuristic, but wrong approach

The correct and the nearly best algorithm by Ho et al. considers all O(N2) pairs of points
as two bus hubs. Let D(H1, H2) be the longest length between two bus stops for fixed two
hubs H1 and H2. The main difficulty in this problem is how well contestants compute
D(H1, H2) for each pair (H1, H2). Many contestants will try to take a (seemingly natural
and intuitive) heuristic approach to connect each of N - 2 points to the nearest one of two
hubs. But this is wrong because there is a counter example shown in Figure 6. Of course,
this approach can produce correct answers for some inputs.

The following two images are caught from the screen shots of the optimal network
produced by the correct algorithm and the non-optimal network produced by the heuristic
for the same input of 100 points. The left one has diameter 167 and the right one has
diameter 168. The longest path defining the diameter is represented with thick lines. In the
left image, some of pairs of edges are crossing, but this does not affect to the minimality.

 (a) Optimal network by Ho et al’s algorithm (b) Non-optimal network by heuristic

P5 P4 P3 y

P1

P2

H2

H1
x 5 10 15 20

5

10

Figure 5

Figure 6

IOI 2002
Yong-In, Korea

Page 64 of 142

(c) Brute force approach

We can make a brute force algorithm running in O(N4) time. It considers all pairs of points
as hubs H1 and H2, and computes D(H1, H2) for each pair in O(N2) time.

B. Test Data Information

Kyung-Young Lim

In total, 20 data will be tested and each data is of 5 credits. All data are made with
parameters n, the number of bus stops, in the range between 2 and 500, and the range of x-
, y-coordinates between 10 and 5,000. Among them, 15 data are randomly generated. The
remaining ones are designed to test the special cases. The data of test no. 1 consists of
only two points, and the data of test no. 12 is 20 × 20 grid with a regular shape with easy
solution. Three data, from test no. 9 to 11 have dumbbell-shape distributions – two points
are lying on (-45)-degree, 45-degree, 0-degree line with fixed positions and the other
points are randomly generated evenly around those two points.

The test data is mainly prepared to distinguish the heuristic and brute force programs with
the correct one. Among 20 test data, only six ones have the same answers by both of the
correct and heuristic programs. Hence, if competitors submit the heuristic program, they
will get at most 30 credits. A brute force program running in O(N4) time will be successful
only for the first six test data within the time limit. For the other test data, its running time
will exceed the time limit, so it gets at most 30 credits.

The detail on the test data is summarized in the following table. The time limit is 4
second. (The largest running time is 3.343 second for the last test data.)

Testing Data Description for BUS
No. Size

(N)
Range of

x,y Description Correct
answer

Heuristic’s
answer

1 2 10 Extreme case 18 18
2 7 20 Example 2 25 26
3 10 30 Random 42 42
4 10 30 Random 52 53
5 50 100 Random 167 168
6 100 20 Random 35 36
7 170 1000 Random 1884 1896
8 180 1000 Random 1845 1849
9 300 650 Dumbbell, (-45)-degree 911 911
10 300 650 Dumbbell, 45-degree 995 995
11 400 675 Dumbbell 0-degree 689 689
12 400 20 20x20 grid 39 39
13 300 100 Random 186 188
14 300 1000 Random 1876 1882
15 350 150 Random 286 287
16 350 500 Random 945 946

IOI 2002
Yong-In, Korea

Page 65 of 142

17 350 2000 Random 3697 3709
18 400 1000 Random 1908 1912
19 400 5000 Random 9381 9405
20 500 500 Random 970 971

Timing Test for BUS (sec.)
Optimal in

C/C++
Optimal in

Pascal
Brute force
in C/C++

Brute force
in Pascal No.

N3 N3 N4 N4
1 0 0 0 0
2 0 0 0.01 0.01
3 0 0 0 0
4 0 0 0 0
5 0 0.01 0.07 0.07
6 0.01 0.04 0.97 0.98
7 0.07 0.13 4.54 8.02
8 0.08 0.16 5.67 10.03
9 0.37 0.9 36.66 65.38
10 0.39 0.91 > 50 > 50
11 0.83 1.95 > 50 > 50
12 0.79 1.85 > 50 > 50
13 0.33 0.76 > 50 > 50
14 0.33 0.75 > 50 > 50
15 0.51 1.2 > 50 > 50
16 0.52 1.2 > 50 > 50
17 0.52 1.18 > 50 > 50
18 0.8 1.8 > 50 > 50
19 0.77 1.75 > 50 > 50
20 1.5 3.343 > 50 > 50

C. References

[1] J.-M. Ho, D. T. Lee, C.-H. Chang, C. K Wong, Minimum Diameter Spanning Trees
and Related Problems, SIAM J. on Computing, 20(5):987—997, 1991.

[2] T. Chan, Semi-online maintenance of geometric optima and measures, 13th ACM-
SODA, 474—483, 2002.

IOI 2002
Yong-In, Korea

Page 66 of 142

D. Source Code for BUS

Kyung-Young Lim

/*
TASK: BUS
LANG: C
Optimal Solution O(N^3)
*/

#include <stdio.h>
#include <math.h>

#define maxn 1001

int n;
int x[maxn], y[maxn];
int p[maxn];
int dis[maxn][maxn];
int pivot;
int min;

void input()
{
 int i;
 scanf("%d", &n);
 for (i = 1; i <= n; i++) {
 scanf("%d", &x[i]);
 scanf("%d", &y[i]);
 }
}

void preprocess()
{
 int i, j;
 for (i = 1; i <= n; i++)
 for (j = i; j <= n; j++) {
 if (i == j)
 dis[i][j] = 0;
 else
 dis[i][j] = abs(x[i] - x[j]) + abs(y[i] - y[j]);
 dis[j][i] = dis[i][j];
 }
}

void qsort(int s, int e)
{
 int i, j, t;
 int v;
 if (s < e) {
 v = dis[pivot][p[e]];
 i = s - 1;
 for (j = s; j <= e - 1; j++)
 if (dis[pivot][p[j]] <= v) {
 i++;
 t = p[i];
 p[i] = p[j];
 p[j] = t;
 }
 t = p[e];
 p[e] = p[i + 1];
 p[i + 1] = t;
 qsort(s, i);
 qsort(i + 2, e);
 }
}

void process()
{

IOI 2002
Yong-In, Korea

Page 67 of 142

 int i, j, k;
 int bp, bq;
 int mm;
 for (i = 1; i <= n; i++)
 p[i] = i;
 min = 9999999;

 for (i = 1; i <= n - 1; i++) {
 pivot = i;
 qsort(1, n);
 for (j = i + 1; j <= n; j++) {

 if (min > dis[i][p[n]] + dis[i][p[n - 1]]) {
 min = dis[i][p[n]] + dis[i][p[n - 1]];
 }

 bp = p[n];
 bq = -99;

 for (k = n; k >= 2; k--) {

 if (dis[j][bp] < dis[j][p[k]]) {
 bq = bp;
 bp = p[k];
 }

 if ((bq == -99) || (dis[j][bq] < dis[j][p[k]]))
 if (p[k] != bp)
 bq = p[k];

 mm = dis[i][p[k - 1]] + dis[i][j] + dis[j][bp];
 if (k > 2)
 if (mm < dis[i][p[k - 1]] + dis[i][p[k - 2]])
 mm = dis[i][p[k - 1]] + dis[i][p[k - 2]];
 if (bq != -99)
 if (mm < dis[j][bp] + dis[j][bq])
 mm = dis[j][bp] + dis[j][bq];

 if (min > mm) {
 min = mm;
 }
 }

 if (dis[j][bp] < dis[j][p[1]]) {
 bq = bp;
 bp = p[1];
 }
 if ((bq == -99) || (dis[j][bq] < dis[j][p[1]]))
 if (p[1] != bp)
 bq = p[1];

 if (min > dis[j][bq] + dis[j][bp]) {
 min = dis[j][bq] + dis[j][bp];
 }
 }
 }
}

void output()
{
 printf("%d\n", min);
}

int main(void)
{
 input();
 preprocess();
 process();
 output();
 return 0;
}

IOI 2002
Yong-In, Korea

Page 68 of 142

Task 3: RODS

Hwan Gue Cho, Ian Munro

Two Rods

PROBLEM

A rod is either a horizontal or a vertical sequence of at least 2 consecutive grid cells. Two
rods, one horizontal and the other vertical, are placed on an N by N grid. In Figure-1, the
two rods are shown by X’s. The rods may or may not be the same length; furthermore,
they may share a cell. If, from a diagram such as Figure-1, it is possible to interpret a cell,
e.g. (4,4), as being in just one rod or in both rods, we make the interpretation that the cell
is in both. Hence, the top cell of the vertical rod is (4,4) rather than (5,4).

Figure-1

Initially we do not know where the two rods are, and so your task is to write a program to
determine their locations. We call the horizontal rod ROD1, and the vertical rod ROD2.
Each grid cell is represented by a row/column pair (r,c), and the top left corner of the grid
is taken to be location (1,1). Each rod is represented as two cells, <(r1, c1), (r2, c2)>. In
Figure-1 ROD1 is <(4,3), (4,8)> and ROD2 is <(4,4), (9,4)>.

This task involves the use of library functions for input, for determining the solution, and
for output. The length of a side of the square grid is given by the library function
gridsize, which your program is to call at the beginning of each test case. To locate the
rods, you can only use the library function rect(a,b,c,d), which examines the
rectangular region [a,b]×[c,d] (shaded region in Figure-1), where a ≤ b and c ≤ d. [Note
carefully the order of these parameters.] If at least one grid cell of either rod falls inside
the query rectangle [a,b]×[c,d], rect returns 1; otherwise it returns 0. So in the example,
rect(3,8,3,6)returns 1. Your task is to write a program to discover the exact location
of the rods using a limited number of rect calls.

1

2

c
↓
3

4

5

d
↓
6

7

8

9

1
2

a→3
4 X X X X X X
5 X
6 X
7 X

b→8 X
9 X

IOI 2002
Yong-In, Korea

Page 69 of 142

You produce output by calling another library function report(r1, c1, r2, c2, p1, q1, p2,
q2) where ROD1 is <(r1, c1),(r2, c2)> and ROD2 is <(p1, q1),(p2, q2)>. Calling report
terminates your program. Recall that ROD1 is horizontal and ROD2 is vertical, and (r1,
c1) is the left end cell of the horizontal rod ROD1. Cell (p1, q1) is the top end cell of
ROD2. Hence r1= r2, c1 < c2, p1 < p2, and q1= q2. If your report parameters do not meet
these constraints, then you will get error messages on standard output.

CONSTRAINTS

 You can access input only by using the library functions gridsize and rect.
 N, the maximum row (column) size of input, satisfies 5 ≤ N ≤ 10000.
 The number of rect calls should be at most 400 for every test case. If your

program calls rect more than 400 times, this will terminate your program.
 Your program must call rect more than once and call report exactly once.
 If a rect call is not valid (e.g., the query range exceeds the grid space), it will

terminate your program.
 Your program must not read or write any files and must not use any standard

input/output.

LIBRARY

You are given a library in the following:

FreePascal Library (prectlib.ppu, prectlib.o)

function gridsize: LongInt;
function rect(a,b,c,d : LongInt): LongInt;
procedure report(r1, c1, r2, c2, p1, q1, p2, q2 : LongInt);

Instructions: To compile your rods.pas, include the import statement
 uses prectlib;
in the source code and compile it as
 fpc –So –O2 –XS rods.pas
The program prodstool.pas gives an example of using this FreePascal library.

GNU C/C++ Library (crectlib.h, crectlib.o)

int gridsize();
int rect(int a, int b, int c, int d);
void report(int r1, int c1, int r2, int c2, int p1, int q1,
 int p2, int q2);

Instructions: To compile your rods.c, use
 #include “crectlib.h”
in the source code and compile it as:
 gcc –O2 –static rods.c crectlib.o –lm
 g++ –O2 –static rods.cpp crectlib.o –lm
The program crodstool.c gives an example of using this GNU C/C++ library.

IOI 2002
Yong-In, Korea

Page 70 of 142

For C/C++ in the RHIDE environment

Be sure that you set the Option->Linker configuration to crectlib.o.

EXPERIMENTATION

To experiment with the library, you must create a text file rods.in. The file must
contain three lines. The first line contains one integer: N, the size of the grid. The second
line contains the coordinates of ROD1, r1 c1 r2 c2; where (r1, c1) is the left end cell of
ROD1. The third line contains the coordinates of ROD2, p1 q1 p2 q2, where (p1, q1) is the
top end cell of ROD2.

After running your program which calls report, you will get the output file rods.out.
This file contains the number of rect function calls and the coordinates of the ends of the
rods you submitted in your call to report. If there are any errors or violations of the
requirements during library calls, then rods.out will contain the corresponding error
messages.

The dialogue between your program and the library is recorded in the file rods.log.
This log file rods.log shows the sequence of function calls your program made in the
form of “k : rect(a,b,c,d) = ans”, which means k-th function call
rect(a,b,c,d) returns ans.

EXAMPLE INPUT AND OUTPUT

Example: rods.in rods.out

SCORING

If your program violates any of the constraints (e.g., more than 400 rect calls), or if your
program’s output (the locations of the rods) is not correct, the score is 0.

If your program’s output is correct, then your score depends on the number of rect calls
for each testing data. For each test case if the number of rect calls is at most 100, then
you get 5 points. If your program calls rect 101 to 200 times, you get 3 points. If the
number of rect calls is between 201 and 400, then you get 1 point.

9
4 3 4 8
4 4 9 4

20
4 3 4 8
4 4 9 4

IOI 2002
Yong-In, Korea

Page 71 of 142

A. Solution

Ian Munro

The fastest approach we know is to perform six binary searches.

 Using entire rows/columns as the query rectangle, the top and bottom rows, and
leftmost and rightmost columns containing any portion of a rod can be found
using 4 binary searches, or 4 lg N calls to rect.

 We now have the smallest rectangle containing all of both rods. By checking the
corners of this rectangle (4 calls to rect, each with a 1 by 1 query rectangle), we
can determine the general form of the structure, as in the examples of the figure
and their rotations.

 Finally the solution can be found in one or two more binary searches depending
on the case.

This leads to a 6 lg N + 4 solution. The maximum value of lg N in the test data is 14,
so we have a solution that takes at most 88 calls to rect. With care, this can be reduced to 6
lg N + 1. Notice that the queries we ask of the data have only two possible answers. As
there are N4(N-1)2/4 possible placements of the rods, lg (N4(N-1)2) ≈ 6 lg N - 2 calls
are necessary, on average, for any algorithm. We do not claim our testing is exhaustive, so
we simply take this as a worst case lower bound. We implemented two versions of the
general approach suggested.

There are a number of variations on this approach. For example, one could try to finding
the bounding rectangle more quickly when it is large. Approaches of this type tend to
double the number of calls to rect and will lead to full marks on the 4 small cases and 3
marks on each of the larger cases.

The most naïve approach involves scanning individual cells to find some portion of a rod,
then looking around for the rest of the rod. This can clearly lead to an N2 solution, or even
slightly worse if one is careless. The approach receives full marks in the four cases of size
10. Another exhaustive approach involves taking entire rows (or columns) as query
rectangles to find the bounding rectangle, then applying a similar approach to find the rods
inside this rectangle. This will require O(N) calls, though the constant will vary with
details of the implementation. Depending on the details of the implementation, such an
approach could also gain credit in several of the larger examples in which the rods are
small and near a corner.

3 corners
intersect rods

2 adjacent corners
intersect rods

2 opposite corners
intersect rods

no corners
intersect rods

IOI 2002
Yong-In, Korea

Page 72 of 142

B. Test Data Information

Jung Gun Lim

Testing Data/Timing Description for RODS

No Size(N) Solution 1 Time(sec) Solution 2 Time(sec) 6 lg N+4
1 10 14 0.00 15 0.00 28
2 1000 51 0.00 51 0.00 64
3 5000 77 0.00 77 0.00 82
4 7000 75 0.00 76 0.00 82
5 10000 80 0.00 79 0.00 88
6 10 17 0.00 18 0.00 28
7 1000 50 0.00 51 0.00 64
8 5000 69 0.00 68 0.00 82
9 7000 77 0.00 76 0.00 82
10 10000 79 0.00 77 0.00 89
11 10 16 0.00 15 0.00 28
12 1000 62 0.00 63 0.00 64
13 5000 73 0.00 71 0.00 82
14 7000 79 0.00 76 0.00 82
15 10000 79 0.00 77 0.00 88
16 10 16 0.00 15 0.00 28
17 1000 52 0.00 51 0.00 64
18 5000 56 0.00 61 0.00 82
19 7000 65 0.00 64 0.00 82
20 10000 70 0.00 70 0.00 88

C. Source code for Library(LINUX)

Jung Gun Lim

#include "crectlib.h"
#define errmsgs 10
static const char *errmsg[errmsgs]={"Cannot open the input file.",
 "Invalid input file.",
 "N is out of range. (should be 5~10000)",
 "One of the coordinates is out of range.",
 "ROD1 is not valid.",
 "ROD2 is not valid.",
 "Cannot create the log file.",
 "Invalid library function call.",
 "Too many rect() calls.",
 "No rect() call."};

#define ERROPENINPUTFILE 0
#define ERRINVINPUTFILE 1
#define ERRNOUTOFRANGE 2
#define ERRCOORDINATEOUT 3
#define ERRFIRSTROD 4
#define ERRSECONDROD 5
#define ERRCREATELOGFILE 6
#define ERRINVCALL 7
#define ERRTOOMANYCALLS 8

IOI 2002
Yong-In, Korea

Page 73 of 142

#define ERRNORECTCALL 9

#define upperbound 400

#ifdef USERLIB

#define De(x) (x)
#define En(x) (x)

#define INFILE "rods.in"
#define OUTFILE "rods.out"
#define LOGFILE "rods.log"

static int rectlib_initialized=En(0);

static int sr1,
 sp2,
 sc1,
 sp1,
 sq2,
 sc2,
 sr2,
 sq1;

static FILE *lgfile, *oufile;
static int count, N;

#else

#define En(x) ((x) * 3 + 5)
#define De(x) (((x) - 5) / 3)

#define INFILE "rods.sin"
#define OUTFILE "rods.sout"
#define LOGFILE "rods.slog"

static int sr1,
 sp2,
 sc1;
static int rectlib_initialized=En(0);
static int count, N;
static int sp1,
 sr2,
 sq1,
 sq2,
 sc2;
static FILE *lgfile, *oufile;

#endif

static void erroroutput (int errno)
{
 FILE *f;
 f=fopen (OUTFILE, "w");
 printf ("%s\n", errmsg[errno]);
 fprintf (f, "%d\n%s\n", En(0), errmsg[errno]);
 fclose (f);
}

static void init() // Read Data and initilization
{
 FILE *f;
 if (De(rectlib_initialized)) return;
 rectlib_initialized=En(1);

 count=En(0);

 f=fopen (INFILE, "rt");
 if (!f)
 {
 erroroutput (ERROPENINPUTFILE);

IOI 2002
Yong-In, Korea

Page 74 of 142

 exit (0);
 }

 if (fscanf (f, "%d", &N)!=1)
 {
 erroroutput (ERRINVINPUTFILE);
 exit (0);
 }

 if (De(N)<5 || De(N)>10000)
 {
 erroroutput (ERRNOUTOFRANGE);
 exit (0);
 }

 if (fscanf (f, "%d %d %d %d %d %d %d %d", &sr1, &sc1, &sr2, &sc2, &sp1,
&sq1, &sp2, &sq2)!=8)
 {
 erroroutput (ERRINVINPUTFILE);
 exit (0);
 }

 N=De(N);
 if (De(sr1)<1 || De(sc1)<1 || De(sr2)<1 || De(sc2)<1 || De(sp1)<1 ||
De(sq1)<1 || De(sp2)<1 || De(sq2)<1 ||
 De(sr1)>N || De(sc1)>N || De(sr2)>N || De(sc2)>N || De(sp1)>N ||
De(sq1)>N || De(sp2)>N || De(sq2)>N)
 {
 erroroutput (ERRCOORDINATEOUT);
 exit (0);
 }
 N=En(N);

 if (De(sc1)>=De(sc2) || De(sr1)!=De(sr2))
 {
 erroroutput (ERRFIRSTROD);
 exit (0);
 }
 if (De(sp1)>=De(sp2) || De(sq1)!=De(sq2))
 {
 erroroutput (ERRSECONDROD);
 exit (0);
 }
 fclose (f);

 lgfile = fopen(LOGFILE, "w");
 if (lgfile==0)
 {
 erroroutput (ERRCREATELOGFILE);
 exit (0);
 }
}

int gridsize ()
{
 if (!De(rectlib_initialized)) init ();
 fprintf (lgfile, "gridsize() = %d\n", De(N));
 return De(N);
}

int rect (int a, int b, int c, int d)
{
 int result;
 if (!De(rectlib_initialized)) init ();

 count=En(De(count)+1);

 fprintf (lgfile, "%d : rect (%d,%d,%d,%d) = ", De(count), a, b, c, d);
 if (a<1 || a>De(N) ||
 b<1 || b>De(N) ||
 c<1 || c>De(N) ||
 d<1 || d>De(N) ||
 a>b || c>d)

IOI 2002
Yong-In, Korea

Page 75 of 142

 {
 fprintf (lgfile, "%s\n", errmsg[ERRINVCALL]);
 fclose (lgfile);
 erroroutput (ERRINVCALL);
 exit (0);
 }

 if (De(count)>upperbound)
 {
 fprintf (lgfile, "%s\n", errmsg[ERRTOOMANYCALLS]);
 fclose (lgfile);
 erroroutput (ERRTOOMANYCALLS);
 exit (0);
 }

 if (De(sr2)>=a && De(sr1)<=b && De(sc2)>=c && De(sc1)<=d)
 result=1;
 else if (De(sp2)>=a && De(sp1)<=b && De(sq2)>=c && De(sq1)<=d)
 result=1;
 else
 result=0;

 fprintf (lgfile, "%d\n", result);
 return result;
}

void report (int r1, int c1, int r2, int c2, int p1, int q1, int p2, int q2)
{
 if (!De(rectlib_initialized)) init ();
 fprintf (lgfile, "report (%d,%d,%d,%d,%d,%d,%d,%d)\n", r1, c1, r2, c2, p1,
q1, p2, q2);
 fclose (lgfile);
 if (De(count)==0)
 {
 erroroutput (ERRNORECTCALL);
 exit (0);
 }
 oufile=fopen (OUTFILE, "w");
 fprintf (oufile, "%d\n%d %d %d %d\n%d %d %d %d\n",
 count, En(r1),En(c1),En(r2),En(c2),
 En(p1),En(q1),En(p2),En(q2));
 fclose (oufile);
 exit (0);
}

D. Source code for RODS (Solution1 in C)

Jung Gun Lim

/*
TASK:RODS
LANG:C
*/
#include <stdio.h>
#include "crectlib.h"

int n;

void swi (int *a, int *b) // swapping two integers
{
 int t=*a;
 *a=*b;
 *b=t;
}

// correcting and submit output
void soutput (int r1, int c1, int r2, int c2, int p1, int q1, int p2, int q2)
{
 if (c1==c2) // the first rod should be horizontal
 {

IOI 2002
Yong-In, Korea

Page 76 of 142

 swi (&r1, &p1);
 swi (&r2, &p2);
 swi (&c1, &q1);
 swi (&c2, &q2);
 }
 if (c1>c2) // correcting the order of output
 {
 swi (&c1, &c2);
 }
 if (p1>p2)
 {
 swi (&p1, &p2);
 }
 report (r1, c1, r2, c2, p1, q1, p2, q2);
}

// getting result of the rect() function with virtual coordinates.
int pseudo_rect (int r1, int r2, int c1, int c2);

// finding white space in the area by binary searching top to bottom
int top_to_bottom_search (int r1, int r2, int c1, int c2)
{
 int center;
 if (r1>r2) return r2;
 r1--;
 while (r1!=r2) {
 center=(r1+r2+1)/2;
 if (pseudo_rect(r1+1, center, c1, c2) == 0)
 r1=center;
 else
 r2=center-1;
 }
 return r2;
}

// bottom to top
int bottom_to_top_search (int r1, int r2, int c1, int c2)
{
 int center;
 if (r1>r2) return r1;
 r2++;
 while (r1!=r2) {
 center=(r1+r2)/2;
 if (pseudo_rect(center, r2-1, c1, c2) == 0)
 r2=center;
 else
 r1=center+1;
 }
 return r1;
}

// left_to_right
int left_to_right_search (int r1, int r2, int c1, int c2)
{
 int center;
 if (c1>c2) return c2;
 c1--;
 while (c1!=c2) {
 center=(c1+c2+1)/2;
 if (pseudo_rect(r1, r2, c1+1, center) == 0)
 c1=center;
 else
 c2=center-1;
 }
 return c2;
}

// right_to_left
int right_to_left_search (int r1, int r2, int c1, int c2)
{
 int center;
 if (c1>c2) return c1;
 c2++;

IOI 2002
Yong-In, Korea

Page 77 of 142

 while (c1!=c2) {
 center=(c1+c2)/2;
 if (pseudo_rect(r1, r2, center, c2-1) == 0)
 c2=center;
 else
 c1=center+1;
 }
 return c1;
}

int br1, br2, bc1, bc2; // boundary of rods

void boundary_search ()
{
 n=gridsize();
 br1=top_to_bottom_search (1, n-2, 1, n);
 br2=bottom_to_top_search (br1+3, n, 1, n);
 bc1=left_to_right_search (1, n, 1, n-2);
 bc2=right_to_left_search (1, n, bc1+3, n);
 br1++;
 bc1++;
 br2--;
 bc2--;
}

// flipping coordinates horizontally, vertically, diagonally
int h_flip=0, v_flip=0, d_flip=0;

// boundary with virtual coordinates
int pr1, pc1, pr2, pc2;

// initializing the virtual boundary
void pseudo_init ()
{
 if (h_flip)
 {
 pc2=(n+1)-bc1;
 pc1=(n+1)-bc2;
 }
 else
 {
 pc1=bc1;
 pc2=bc2;
 }
 if (v_flip)
 {
 pr2=(n+1)-br1;
 pr1=(n+1)-br2;
 }
 else
 {
 pr1=br1;
 pr2=br2;
 }

 if (d_flip)
 {
 swi (&pr1, &pc1);
 swi (&pr2, &pc2);
 }
}

int pseudo_rect (int r1, int r2, int c1, int c2)
{
 if (d_flip)
 {
 swi (&r1, &c1);
 swi (&r2, &c2);
 }
 if (v_flip)
 {
 r1=(n+1)-r1;
 r2=(n+1)-r2;

IOI 2002
Yong-In, Korea

Page 78 of 142

 swi (&r1, &r2);
 }
 if (h_flip)
 {
 c1=(n+1)-c1;
 c2=(n+1)-c2;
 swi (&c1, &c2);
 }
 return rect (r1, r2, c1, c2);
}

// submitting result with virtual coordinates

void pseudo_output (int r1, int c1, int r2, int c2, int p1, int q1, int p2, int
q2)
{
 if (d_flip)
 {
 swi (&r1, &c1);
 swi (&r2, &c2);
 swi (&p1, &q1);
 swi (&p2, &q2);
 }
 if (v_flip)
 {
 r1=(n+1)-r1;
 r2=(n+1)-r2;
 p1=(n+1)-p1;
 p2=(n+1)-p2;
 }
 if (h_flip)
 {
 c1=(n+1)-c1;
 c2=(n+1)-c2;
 q1=(n+1)-q1;
 q2=(n+1)-q2;
 }
 soutput (r1, c1, r2, c2, p1, q1, p2, q2);
}

// finding two rods in the boundary found.

void find_shape ()
{
 int l1, l2, l3, l4, rk, ck, rl, cl;

 l1=pseudo_rect (br1, br1, bc1, bc1);
 l2=pseudo_rect (br2, br2, bc1, bc1);
 l3=pseudo_rect (br1, br1, bc2, bc2);
 // watching 3 corners.

 if (l1+l2+l3==0) // cross shape
 {
 rk=top_to_bottom_search (br1+1, br2-2, bc1, bc1);
 ck=left_to_right_search (br1, br1, bc1+1, bc2-2);
 soutput (rk+1, bc1, rk+1, bc2, br1, ck+1, br2, ck+1);
 }
 // 0 or 1 or 3 of 4 corners could be filled
 if (l1+l2+l3==1)
 l4=1;
 else if (l1+l2+l3==3)
 l4=0;
 else
 l4=pseudo_rect(br2, br2, bc2, bc2);

 if (l1+l2+l3+l4==3)
 {
 if ((br2-br1)==1 && (bc2-bc1)==1) // in 2 by 2 square
 {
 if (l1==0)
 {
 soutput (br2, bc1, br2, bc2, br1, bc2, br2, bc2);
 }

IOI 2002
Yong-In, Korea

Page 79 of 142

 if (l2==0)
 {
 soutput (br1, bc1, br1, bc2, br1, bc2, br2, bc2);
 }
 if (l3==0)
 {
 soutput (br1, bc1, br2, bc1, br2, bc1, br2, bc2);
 }
 if (l4==0)
 {
 soutput (br1, bc1, br2, bc1, br1, bc1, br1, bc2);
 }
 }

 if (l2==0 || l4==0) v_flip=1;
 if (l3==0 || l4==0) h_flip=1;
 if ((br2-br1)==1) d_flip=1;
 pseudo_init ();
// *
// *
// *
// *
//
// ********
//
 if ((pc2-pc1)==1)
 {
 rk=bottom_to_top_search (pr1+2, pr2-1, pc2, pc2)-1;
 if (rk == pr2-1) rk=pr2;
 pseudo_output (pr1, pc2, rk, pc2, pr2, pc1, pr2, pc2);
 }
 if (pseudo_rect (pr2-1, pr2-1, pc2, pc2) == 0)
 {
 rk=bottom_to_top_search (pr1+2, pr2-2, pc2, pc2)-1;
 pseudo_output (pr1, pc2, rk, pc2, pr2, pc1, pr2, pc2);
 }
 else
 {
 ck=right_to_left_search (pr2, pr2, pc1+2, pc2-1)-1;
 if (ck==pc2-1) ck=pc2;
 pseudo_output (pr1, pc2, pr2, pc2, pr2, pc1, pr2, ck);
 }
 }
 if (l1+l2+l3+l4==2)
 {
 if ((l1==1 && l2==1) ||
 (l2==1 && l4==1) ||
 (l1==1 && l3==1) ||
 (l3==1 && l4==1))
 {
//
// **********
//
// *
// *
// *
//

 if (l2==1 && l4==1)
 {
 v_flip=1;
 d_flip=1;
 }
 if (l1==1 && l3==1)
 {
 d_flip=1;
 }
 if (l3==1 && l4==1)
 {
 h_flip=1;
 }
 pseudo_init ();

IOI 2002
Yong-In, Korea

Page 80 of 142

 rk=top_to_bottom_search (pr1+1, pr2-2, pc2, pc2) + 1;
 if (pc2-pc1==1)
 pseudo_output (pr1, pc1, pr2, pc1, rk, pc1, rk, pc2);
 ck=left_to_right_search (rk, rk, pc1+1, pc2-2)+1;
 if (ck==pc1+1) ck=pc1;
 pseudo_output (pr1, pc1, pr2, pc1, rk, ck, rk, pc2);
 }
 else
 {
 if (l1==0)
 {
 v_flip=1;
 }
 pseudo_init ();

// *****
//
// *
// *

 if (pseudo_rect (pr1, pr1, pc1+1, pc1+1)==0)
 {
 rk=bottom_to_top_search (pr1+2, pr2-1, pc1, pc1)-1;
 cl=left_to_right_search (pr2, pr2, pc1+1, pc2-1)+1;
 pseudo_output (pr1, pc1, rk, pc1, pr2, cl, pr2, pc2);
 }
 else
 {
 ck=right_to_left_search (pr1, pr1, pc1+2, pc2-1)-1;
 rl=top_to_bottom_search (pr1+1, pr2-2, pc2, pc2)+1;
 pseudo_output (rl, pc2, pr2, pc2, pr1, pc1, pr1, ck);
 }
 }
 }
}

int main()
{
 boundary_search ();
 find_shape ();
 return 0;
}

IOI 2002
Yong-In, Korea

Page 81 of 142

Result of Day2 Competition

A. Summary

Task Name Submission # of full
scores Average Standard

deviation
BATCH 235 11 23.15 28.28

BUS 234 6 22.56 21.76
RODS 216 14 37.14 34.85

Note: The averages and standard deviations are calculated from submitted solutions only.

B. Contestants’ Scores (sorted to X-axis)

batch Submit : 235
 Average : 23.15
 # Full Score : 11

0

20

40

60

80

100

120

0 50 100 150 200 250

batch Submit : 235
 Average : 23.15
 # Full Score : 11

0

20

40

60

80

100

120

0 50 100 150 200 250

IOI 2002
Yong-In, Korea

Page 82 of 142

bus submit : 234
 Average : 22.56
 # Full Score : 6

0

20

40

60

80

100

120

0 50 100 150 200 250

bus submit : 234
 Average : 22.56
 # Full Score : 6

0

20

40

60

80

100

120

0 50 100 150 200 250

rods Submit : 216
 Average : 37.14

 # Full score : 14

0

20

40

60

80

100

120

0 50 100 150 200 250

rods Submit : 216
 Average : 37.14

 # Full score : 14

0

20

40

60

80

100

120

0 50 100 150 200 250

IOI 2002
Yong-In, Korea

Page 83 of 142

BACKUP TASKS

Back-Up Task 1: NETWORK

Jung-Heum Park

Robust Communication

PROBLEM
Your company has a head office in Seoul and a number of local branch offices located in
other cities around Korea. Every office has a communication computer. The computer in
each local branch is connected to the main computer in the head office via a bidirectional
communication link. Furthermore, some pairs of computers in local branches are also
connected to each other via direct communication links. However, there can only be a
single communication link between any pair of computers. Messages sent from one
computer to another can follow any continuous path between the computers, using any
links and passing through any intermediate computers.

Figure 1 shows an example communication network of a
company with one head office and four local branches.
Circles represent communication computers and lines
represent communication links. The number shown next to
a circle is the index of that computer. The main computer
always has index 1; the remaining computers are numbered
sequentially starting at index 2. Observe that there are
three different communication paths between computer 2
and computer 3:
2-3 (use the direct communication link between 2 and 3)
2-1-3 (use the link from 2 to the head office 1, plus the link from 1 to 3)
2-1-4-3 (from 2 to the head office 1, from 1 to 4, and from 4 to 3 over the direct link)

Unfortunately, computers or links can fail, knocking out communication paths that use
them. In the example above, if the link from 1 to 3 were to fail, then path #2 would not be
usable, but paths #1 and #3 would still work. If instead computer 4 were to fail, then path
#3 would not be usable but paths #1 and #2 would still work.

Your company wants its communication network to be robust to a single failure, that is,
designed so that neither a single computer failure nor a single communication link failure
would interfere with the ability of each fault-free computer to communicate with all other
fault-free computers. You may add bidirectional communication links between pairs of
computers in local branches to achieve this goal, but each new link has an associated
construction cost. Your task is to figure out the minimum total cost of any set of new
links you could add to your communication network which would make the network
robust to a single failure either of a computer or of a link (though not necessarily both).

Figure

IOI 2002
Yong-In, Korea

Page 84 of 142

INPUT

The first line contains the two integers n and m, where N is the number of computers in
the network (3≤N≤1000) and m is the number of existing direct communication links
between computers in local branches. The second line contains m pairs of integers (a1,b1),
(a2,b2), …, (am,bm) describing those direct links, where each pair (ak,bk) indicates that
there is a bidirectional communication link between computer ak and computer bk in local
branches. Recall that every branch office has a link to the head office; those links are not
listed here. The following n lines contain the costs of building communication links: line
i+2 in the input file contains N integers between 0 and 1000 inclusive which are the costs
of building a link between computer i and each computer 1, 2, …, N, respectively. Note
that since the communication links are all bidirectional, this table of costs will be
symmetric (that is, costij = costji)).

OUTPUT

The output contains a single integer on one line: the minimum cost to make the
communication network robust to a single failure.

EXAMPLE INPUT AND OUTPUT

 Input output

SCORING

For each test case, if the program outputs the minimum cost, full points are awarded; else
no points are awarded for that test case.

A. Comment

The (Weighted) Biconnectivity Augmentation problem is NP-hard[1]. The computer
network can be modeled by a graph G(V,E). We let H(V’, E’) be the graph obtained by
removing the vertex representing the main computer and its associated edges from G. It
holds true that G(V,E U X) is biconnected if and only if H(V’, E’ U X) is connected for
any set X of pairs of computers in local branches. To find a minimum cost connected
graph of H, employing a minimum cost spanning tree algorithm is sufficient

5 2
3 2 3 4
0 100 50 100 100
100 0 100 100 100
50 100 0 20 100
100 100 20 0 80
100 100 100 80 0

80

IOI 2002
Yong-In, Korea

Page 85 of 142

B. Test Data Information

The test data consists of 25 test cases, each generated mainly at random.

C. Grading

If a contestant’s program outputs the correct answer for a test case in the time limit, then
he/she will get 4 points for that test, and otherwise he/she get 0 points for the test case.

D. References

[1] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, 1979.

IOI 2002
Yong-In, Korea

Page 86 of 142

Back-Up Task 2: DIAMOND

Tae Cheon Yang

Digital Diamond

PROBLEM

Given is an m × n grid of equal sized cells. Cells have row numbers counted from top to
bottom and column numbers counted from left to right; top left corner has row number 1
and column number 1. In the grid, B cells are black and the rest is white. A digital
diamond of size k (k ≥1) is a square such that its diagonals are horizontal and vertical, and
the sides of the square have k cells placed diagonally (see example).
.

 (a) (b) (c)

Figure 1. (a) A digital diamond of size 1
(b) A digital diamond of size 2
(c) A digital diamond of size 3

There is an n × m grid and some grids are filled with black as shown in Figure 2.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Figure 2 A digital diamond of size 6.

This problem is to find a largest digital diamond which contains at most one black grid.

INPUT

The first line contains two integers m and n (1 ≤ m, n ≤ 100000): first m the number of
rows and then n the number of columns in the grid. The second line contains one integer B

IOI 2002
Yong-In, Korea

Page 87 of 142

(0 ≤ B ≤ 5000) the number of black cells. The following B lines contain two positive each,
the row number and the column number of the black cell separated by one blank.

OUTPUT

The output file contains the size of the digital diamond and the coordinate of the center of
the digital diamond.

EXAMPLE INPUTS AND OUTPUTS

Example1: diamond.in diamond.out

A. Comment

This problem can be reduced to the problem for the finding the largest empty circle in L1-
metric. So, the solution of this problem can be computed by constructing an L1-metric
Voronoi diagram.

We can consider a black grid as a point in Euclidean plane, then each black grid has
integer coordinates. To construct an L1-metric Voronoi Diagram of these points, we
should compute the bisector between two points. Due to L1-metric, the distance of every

19 19
21
2 13
2 18
3 4
4 5
5 8
5 12
6 1
6 16
8 10
9 13
9 18
10 6
11 15
12 2
14 18
15 1
15 9
15 15
16 1
16 2
16 3
16 4
17 1
18 12
18 17

6
11 7

IOI 2002
Yong-In, Korea

Page 88 of 142

two points is an integer. To compute a bisector between two points, no floating point
arithmetic is needed. Moreover, the slope of all bisector is either 1, -1, 0, or ∞.

Therefore we can easily compute an L1-metric Voronoi diagram in O(N log N) by using
divide-and-conquer technique. In this diagram, we can find the largest empty diamond
which contains no black grid in O(N). Let D be the size of this diamond and let D* be the
optimal size of this problem. Let D*=D.

Using a Voronoi diagram of L1-metric, we can solve our problem as follows. For every
point p, we reconstruct the Voronoi diagram of L1-metric partially without p, then update
D*. This step can be done in O(N). Therefore, we can solve this problem in O(N log N). If
we try to solve this problem directly in grid space, then at least O(N3) time algorithm may
be needed.

B. Reference

[1] D.T. Lee and C. K. Wong, Voronoi diagrams in L1 metrics with 2-dimensional
storage applications, SIAM J. Computing, 0:200-211, 1980

IOI 2002
Yong-In, Korea

Page 89 of 142

SUBMITTED TASKS

Submitted Task 1: ROBOT

Sam-Myo Kim

Robot

PROBLEM

 There is a robot on a checkerboard (see Figure 1), which is divided into cells. The robot
can read and write a symbol on the current cell (i.e., the cell where it is positioned), and
move to its neighboring cell. Maneuvering this robot with a sequence of commands we
want to draw a figure 8 of 8’s as shown in Figure 2.
 Each command should be expressed in one of the following three forms, where T and T′
can be either R, L, U, D, or S, respectively, denoting a move to the right, left, up, down,
and stop.

(i) <a, b, T> : Reading symbol a on the current cell, rewrite it with b and move to
the next neighboring cell in direction T. For example, <B, 8, R> denotes the
command for “Reading B (for the blank symbol) on the current cell, rewrite it
with 8, and move to the right.”

(ii) {a, b, T}<c, d, T′> : While reading a, keep moving to direction T after rewriting
the symbol a with b until you read c. Then rewrite c with d and move to
direction T′. This command should satisfy the condition that a ≠ c. For
example, {8, 8, U}<B, 8, L> denotes the command for “While reading 8 on the
current cell, keep moving up rewriting the 8 with 8 until you read B. Then
rewrite the B with 8 and move on to the left cell.”

(iii) [*, i, j] : Repeat previous i-th command through up to j-th command. For
example, [*, 4, 9] is the command “Repeat previous fourth command through
ninth command.” Using this command, we have the following restriction; the
first entry of the next command, if any, to this one and the first entry of j+1st
command should be different. In other words, suppose that <a, b, c> is the next
command to this repeat command and <d, e, f> is j+1st command. Then it must
be a ≠ d.

 It is possible to have a = b (or c = d) in the above commands, which means that the robot
does not change the symbol. The robot executes one command at a time.

Figure 1

Robot

8 8 8

8
8

8

8 8 8

8
8

8
8

Figure 2

IOI 2002
Yong-In, Korea

Page 90 of 142

Assume that all the board cells are initially written with blanks, and the robot can draw the
figure positioned at any location on the board. Now, we have the following questions:

Question (a): Under the restriction that the robot can only read and write two symbols, B
(for blank) and 8, what sequence of commands (i.e., program) will you send to the robot to
draw the figure? The robot should stop when it is done with the work. Your answer
will be evaluated according to the correctness and brevity (i.e., in terms of the number) of
your program.

Question (b): Now, suppose that the robot is allowed to read and write an extra symbol,
say #, in addition to B and 8. How can you reduce the length of your commands? Again,
your answer will be evaluated according to the correctness and brevity of your program.

A. Solutions and Remarks:

- We can find a naïve answer by drawing a graph having edges correspond to the
commands given to the robot as shown in Figure (3) below. Obviously, the sequence of
15 commands (i.e., edges) is as show in Figure (4). Actually, the graph represents a finite
state automaton that draws the figure. So, the problem can be interpreted as a robot motion
planning as well as designing a finite state automaton. (Assuming that the participating
students do not understand the automata theory, I wrote the problem in terms of robot
motion planning, which can be dealt with their “bright” common sense.) Notice that the
number of states does not necessarily match to the length of the program.

Figure 3. A naïve motion planning.

<8, 8, S>

<B,8,R> <B,8,R>

<B,8,R>

<B,8,L>

start

<B,8,D>

<B,8,D>

<B,8,D>

<B,8,D>

<B,8,L> <B,8,L>

<B,8,U>

<B,8,U>

<8,8,U>

<B,8,U>

Figure 4. A naïve answer for part (a)

1. <B, 8, R>
2. <B, 8, R>
3. <B, 8, D>
4. <B, 8, D>
5. <B, 8, D>
6. <B, 8, D>
7. <B, 8, L>
8. <B, 8, L>
9. <B, 8, U>
10. <B, 8, U>
11. <B, 8, R>
12. <B, 8, L>
13 <8, 8, U>
14. <B, 8, U>
15. <8, 8, S>

IOI 2002
Yong-In, Korea

Page 91 of 142

- Notice that the following “cleaver” answer utilizes symmetric property of the figure.
(See Figure 7 on the following page for the robot motion profile.)

(B,8,D)

(B,8,D)

start

(B,8,U)

(B,8,U)

(B,8,R) (B,8,R)

(8,8,N) (B,8,L)

(8,8,D)

(B,8,L)

Figure 5. An intelligent motion planning
 for question (a).

1. <B, 8, D>
2. <B, 8, D>
3. <B, 8, R>
4. <B, 8, R>
5. <B, 8, U>
6. <B, 8, U>
7. <B, 8, L>
8. <B, 8, L>
9. {8, 8, D}<B,8,D>
10. [*, 3, 6]
11. <8, 8, S>

Figure 6. An intelligent answer
for question (a).

(B,#,D)

(B,8,D)

start

(B,8,U)

(B,8,U)

(B,8,R) (B,8,R)

(8,8,S)

(B,8,L)

(8,8,D)

(#,8,D)

Figure 8. Motion planning using one
additional symbol (i.e., flag #) for question
(b).

1. <B, #, D>
2. <B, 8, D>
3. <B, 8, R>
4. <B, 8, R>
5. <B, 8, U>
6. <B, 8, U>
7. {B, 8, L}<#,8,D>
8. {8, 8, D}<B,8,D>
9. [*, 3, 6]
10. <8, 8, S>

Figure 9. An answer for question (b):
Robot program with 10 commands using
one additional symbol #.

8 8 8
8 8
8 8 8
8 8
8 8 8

start

Stop

Figure 7. A Cleaver motion planning.

IOI 2002
Yong-In, Korea

Page 92 of 142

- Figures 10 and 11 show another motion plan and an answer for part (b). I designed this
problem out of one of homework assignments given to my automata class. The original
problem is to design a 2-D automaton with smallest possible number of states. There are
more solutions than the ones shown here. However, as I commented before, with the set of
3 commands given in this problem, small automaton does not necessarily give small
program.

- It is easy to see that with command (ii) {a, b, T}<c, d, T’> we can implement command
(i), because if current symbol is c, which is not equal to a, then the iteration part {a, b, T}
would not be executed. I kept the command (i) for convenience.

(B,8,R) (B,8,R)

start

(8,8,R) (B,8,L)

(B,8,D)

(8,#,D)

(B,B,D)

(B,B,D)

(B, #, R)

(8, 8, D),

(B, #,L)
(#, 8, L)

(B,8,U)

(#, 8, L)

(B, 8, D)

(#, 8, S)

Figure 10. Another motion planning with
flag #.

1. <B, 8, R>
2. <B, 8, R>
3. <B, #, L>
4. <8, #, D>
5. <B, B, D>
6. <B, 8, D>
7. <B, B, D>
8. <B, 8, L>
9. <B, #, R>
10. <8, 8, R>
11. {B, 8, U}<#, 8,
L>
12 <# 8 L>

Figure 11. Another answer for
part (b) with 14 commands.

IOI 2002
Yong-In, Korea

Page 93 of 142

Submitted Task 2: PICTURE

Kunsoo Park

Picture

PROBLEM

You are given a small picture. You can carefully look at the given picture and remember
every detail of the picture. Then you are supposed to go into a dark room. A large picture
is hung on a wall of the dark room. Inside the large picture, there is at least one occurrence
of the small picture given to you. You are to find (any) one occurrence of the small picture
in the large picture. The problem is that you cannot see the large picture because you are
in a dark room. You know only the size of the large picture. The only way you can access
the large picture is by asking queries. You can ask a query to test whether or not a pixel of
the small picture is the same as a pixel of the large picture. The answer will be either yes
or no.

You are to write a program that, given a small picture and the size of a large picture, finds
an occurrence of the small picture in the large one. If the output of your program is wrong,
you will get 0. If your output is correct, your score depends on the number of queries. The
query is implemented as a library. We assume that the pictures are squares.

LIBRARY

You are given a library with the following single operation:

query(x1,y1,x2,y2): (x1,y1) is the position of a pixel in the small picture; (x2,y2) is the
position of a pixel in the large picture; if the two pixels are the same, query(x1,y1,x2,y2)
returns 1. Otherwise, it returns 0.

INPUT

The input file name is PICTURE.IN. The first line of the input file contains two integers
m and n. The size of the small picture is m*m and that of the large picture is n*n. The
following m lines of the input file contain rows of the small picture.

OUTPUT

The output file name is PICTURE.OUT. The output file contains one line that consists of
two integers x and y. The position (x,y) in the large picture should be an occurrence of the
small picture.

IOI 2002
Yong-In, Korea

Page 94 of 142

EXAMPLE INPUT AND OUTPUT

If the large picture is the following, the answer should be (1,2) or (2,3).

Example 1: picture.in large picture

A. Solution and testing data

There can be three levels of solutions

(a) Very hard to get this solution

Consider the small picture as a set of its rows. Build a trie that represents the set of rows.
Ask queries to see if some specified rows of the large picture contain a row of the small
picture. Every m-th row of the large picture is a specified row (thus there are n/m
specified rows in the large picture). If a specified row of the large picture contains a row
of the small picture, then check whether there is an occurrence of the small picture. This
gives an optimal expected time algorithm. See Karkkainen and Ukkonen.

(b) Pretty good solution

Determine a fingerprint of the small picture. A simple fingerprint can be the first row of
the small picture. Search the large picture for fingerprints (here one needs to use a fast
algorithm such as Horspool). For each fingerprint, check whether it is an occurrence of
the small picture.

(c) Naïve algorithm.

For each position of the large picture, check whether it is an occurrence of the small
picture.

B. Problem Type

Reactive problem

2 5
ab
aa

aabcd
aaaba
baaab
aaaab
ababa

IOI 2002
Yong-In, Korea

Page 95 of 142

C. References

[1] Karkkainen and Ukkonen, Two and higher dimensional pattern matching in
optimal expected time, SIAM J. Comput. 29, 2 (1999), 571-589.

[2] Horspool, Practical fast searching in strings, Software-Practice and Experience 10
(1980), 501-506.

IOI 2002
Yong-In, Korea

Page 96 of 142

Submitted Task 3: BRIDGE

Chong-Dae Park

Bridge Construction

PROBLEM

A long time ago, in an ocean far far away, there was a small kingdom with 101 islands.
The king of the kingdom wanted to build bridges to connect the islands. A large project is
initiated to connect these islands by 100 bridges. As a chief engineer of the construction
post, you had to make an arrangement plan. There were some restrictions for the
arrangement. A bridge had to be straight and not to cross one another. Moreover, the
direction of a bridge should be orthogonal, i.e., it should lie from south to north or from
east to west. You would get the awards if your attempt was a success, but you might be
punished if you were failed. Unfortunately it is not possible to obtain such an arrangement
in any case. I wish you a good luck.

INPUT

The input file name is bridge.in. The first line contains one integer: the number of
islands in the kingdom, M, 2 ≤ M ≤ 200. The following M lines contain information about
the positions (x, y) of M islands (1 ≤ x, y ≤ 1000).

OUTPUT

The output file name is bridge.out. The output file contains M-1 lines. Each of these
lines contains two integers: the pair of islands to connect. The islands are numbered from
1 to M. If such an arrangement is not possible, the output should be just a single line that
contains “0”.

EXAMPLE INPUTS AND OUTPUTS

Example1: bridge.in bridge.out

9
3 3
6 3
5 5
8 5
6 6
8 6
5 8
3 9
6 9

1 2
3 4
5 6
8 9
1 8
7 3
4 6
9 5

IOI 2002
Yong-In, Korea

Page 97 of 142

Example 2: bridge.in bridge.out

A. Comment

This problem belongs to NP-hard.

Given a set P of n grid points in the plane, deciding whether P possesses a crossingfree
spanning tree with only axis-parallel edges is NP-complete. [1]

And given a topological layout(i.e., a drawing in the plane) of a graph, the deciding the
existence of a noncrossing path connecting path connecting two given vertices is NP-
complete, even if the graph is 3-regular. [2]

B. Testing data generation plan

Although this problem belongs to NP-hard, many cases could be solved easily. The test
should not contain many impossible cases, since the lazy program says just “0” may get
higher scores.

C. References

[1] K. Jansen, and G. J. Woeginger, The complexity of detecting crossingfree
configurations in the plane, BIT, 33(4):580-595, 1993.
[2] J. Kratochvil, A. Lubiw, and J. Nesetril, Noncrossing subgraphs in topological
layout, SIAM J. Discrete Mathematics, 4:223-244, 1991.

5
1 2
1 1
2 8
5 2
2 1

0

IOI 2002
Yong-In, Korea

Page 98 of 142

APPENDIX I: IOI 2002 Competition Rules

These Competition Rules include the Competition Procedures and Judging Procedures,
which the host is obliged to send to invited countries four months prior to the competition.
Minor changes to these rules will likely be made; the final version will be distributed in
the first GA meeting of IOI 2002.

Competition Dates

IOI 2002 will take place from Sunday, August 18 (Arrival Day) to Sunday, August 25
(Departure Day). The First Competition Day is Tuesday, August 20, and the Second
Competition Day is Thursday, August 22. On each competition day contestants will be
given three tasks to complete in the five hours from 9:00 to 14:00.

There will also be a practice competition round on Monday, August 19. All contestants
MUST take part in the practice competition round.

Competition Equipment

The specification is: a PC with a 1.7 GHz Pentium 4 processor, 256 MB RAM, a standard
US keyboard, a mouse, and a color screen. If the model information is changed, this
section will be updated, and announcements will be made on the web site and the IOI
mailing list.

Blank paper and writing utensils will be provided. Contestants may NOT take any
material such as computing equipment (including calculators, organizers, PDAs,
computers, ...), books, manuals, written or printed materials, diskettes, CD-ROMs, or
communication devices into the competition area. A contestant who is in possession of
this type of material in the competition room may be disqualified.

Programming Environment

The computers have a dual-boot installation of Debian GNU/Linux 3.0 'woody' and
Windows XP. In both the Linux and Windows environments, the programs installed for
the competition are set up in such a way that they can be found in the users' path (i.e. no
extra setup is needed to use the tools). Both the Linux and Windows platforms include:

 GCC compiler version 2.95.3, and
 Freepascal (fpc) compiler version 1.0.6.

These are the official compilers for IOI 2002. Newer versions of software may be installed
as necessary to resolve hardware problems and/or software compatibility/bug-patch issues.
If so, the changes will be announced on the competition web site and the IOI mailing list.

IOI 2002
Yong-In, Korea

Page 99 of 142

The contestant should be familiar with the programming package of his/her choice,
including the use of libraries or units. The contestant should be able to execute programs,
change the working directory and manage files, and use a web browser. Similar
installations will be used for the computers in the translation computer room. Windows
installations include MS Word with some multi-lingual support and PowerPoint. In the
Linux environment, TeX will be provided.

Competition Tasks

All of the tasks in IOI2002 are designed to be algorithmic in nature. There are two types
of tasks: (1) tasks for which a solution comprises a single source file of a computer
program, and (2) tasks for which a solution comprises a set of "output" data files.

Efficiency plays an important role in some tasks. Whenever efficiency of algorithmic
computations is important, there will be at least one grading input for which some correct
but inefficient programs can also score some points. It is important, therefore, for
contestants to attempt a task even if the contestant does not know how to solve the hardest
possible test cases.

(1) Tasks for which a program source file is requested as a solution:

When a program source file is required as a solution, the program source provided by the
contestant must be contained in a single source file. The task documentation will specify:

 the input and output data format and value ranges,
 the resource limitations for the computations (e.g. cpu time, memory),
 any other constraints on the program behavior, and
 the comment tags required in the source code so that the grading system can

identify the task and programming language.

The submitted source program must be smaller than 1 MB and the evaluation server
computer must be able to compile it in less than 30 seconds. Submitted programs which
do not meet these constraints will be rejected by the submission system and the contestant
will be notified.

(2) Tasks for which output data files are requested as a solution:

There may be tasks for which input data is given to the contestant and the contestant is
required to produce only the output data as an answer. If the contestant writes programs to
help determine the output data, the programs should not be submitted with the solution.
The input data will be provided in ASCII text files. For these tasks, the task
documentation will specify:
the structure of the input and output files, and
the full set of official input files.

Input and output data:

IOI 2002
Yong-In, Korea

Page 100 of 142

In all tasks, input and output data consists of a sequence of items. An item is a string of
printable non-white-space characters (ASCII code from 33 through 126). An item may
represent an integer or a general string; the meaning of each item will be given in the task
specification.

Spaces and end-of-line characters separate items. The format of the input data will be
given in the task specification. The output data files should be formatted strictly according
to the task-specific instructions. However, the grading system scores output files using
C++ streams in such a way that extra white space (spaces and end-of-line characters)
between or around items is ignored.

Directories:

In both Windows and Linux, the environment will be provided with a directory created for
each task. Each directory will be named after its task and will contain any required task-
related materials. As an example, consider a competition round with three tasks, named
"number," "string," and "red." In Linux each contestant's home directory will have the
three subdirectories ~/number/, ~/string/, and ~/red/; and in Windows each
computer will have the folders C:\ioi\number\, C:\ioi\string\, and
C:\ioi\red\. All provided files relating to the "string" task will be contained in the
~/string/ subdirectory in Linux and in the C:\ioi\string\ subdirectory in
Windows.

Practicing

The competition computers will be available for practice during hours that will be
announced at the competition. All contestants must take part in the practice competition
round on Monday, August 19. Before each competition round, the computers will be
assigned randomly to the contestants (with a different assignment each time).

Curfew

A curfew will be in effect beginning with the start of a GA meeting where tasks for a
competition day are presented and approved, and ending on the following competition day
after the start of the competition. During the curfew the contestants are not allowed to
communicate by any means, direct or indirect, with any people who attend this meeting.
The contestants and the GA meeting participants must obey any instructions which limit
the area where they are allowed to be. The GA meeting participants are not allowed to
communicate task-related information to anyone not at the meeting before the end of the
curfew.

Any contestant breaking the curfew may be disqualified. If some other person associated
with a national delegation breaks this rule, then all contestants of that delegation may be
disqualified.

Competition-Time Procedures

IOI 2002
Yong-In, Korea

Page 101 of 142

Starting the competition:

Contestants will be taken to the competition hall before the competition starts. A randomly
chosen computer is designated to each contestant (with a different assignment each time).
The computer will be powered up and will display a menu from which the contestant may
choose to boot either Linux or Windows. The competition envelope containing the task
definitions and other necessary information will be in front of the computer. Contestants
are not allowed to touch the keyboard or open the envelope until the start signal is given.
At the starting whistle, contestants may open their envelopes and use their computers.

Logging in is not necessary for Windows. Under Linux, contestants should log in as:
username: ioi
password: ioi

Questions:

During the first hour of competition, contestants may submit written questions concerning
any ambiguities or points needing clarification in the competition tasks. Questions must be
submitted on the provided Clarification Request Forms, expressed either in the
contestant's native language or in English. If required, delegation leaders will translate
their contestants' questions to English after they are submitted before sending the
questions to the Scientific Committee.

The Scientific Committee will answer every question submitted by the contestants. Since
this may take some time, contestants should continue working while waiting for the
answer to their questions. The only responses which will be given are "YES", "NO," and
"NO COMMENT;" contestants should phrase their questions so that a yes/no answer will
be meaningful. Contestants will not be involved in or exposed to discussion regarding
their questions.

Assistance:

Contestants may ask the support staff for assistance at any time. The staff members will
not answer questions about the competition tasks, but will deliver Clarification Request
Forms and printouts, help locate toilets and refreshments, and assist with computer
problems.

Printing:

Contestants will be able to print via a facility provided in the competition environment.
The support staff will deliver the printouts to the contestants; there might be a small delay
before printouts are delivered. Contestants should not leave their computer to find
printouts.

Backups:

Contestants will be able to make and retrieve backups through a facility provided in the
competition environment.

IOI 2002
Yong-In, Korea

Page 102 of 142

Test execution:

For tasks that require programs as solutions, a contestant will be able to submit a solution
along with an input file for test execution. The test execution system will compile and
execute the program under Linux, enforcing the resource limitations for the particular
task. The program output, the execution time, and possibly error messages will be
displayed. A contestant can have at most one test execution in progress at a time; until a
test execution has completed further submissions will be blocked. The test execution
facility will not be available during the last 5 minutes of the competition.

Submitting:

Contestants will be able to submit their solutions through a facility provided in the
competition environment. For tasks which require output files as solutions, the submission
facility will validate the format of the output file submitted, accepting the output file for
grading if it passes. For tasks that require programs as solutions, the submission facility
will verify that the program compiles and obeys the stated limits on source code size and
compile time, and will run the program on a simple test case that is given in the task
description, enforcing the relevant run-time resource constraints. If the submission
produces the correct output, then the submission is accepted for grading.

Contestants may submit any number of times for each task; each accepted submission
replaces any other submissions of that task by that contestant. The last accepted
submission by a contestant for a task is officially graded in a separate process and
contestants will not be informed about the results until after the competition.

Ending the competition round:

Warnings will be given with 15 minutes remaining in the round (3 short whistles and a
verbal announcement “15 minutes”), 5 minutes remaining (2 short whistles and a verbal
announcement “5 minutes”) and 1 minute remaining (1 short whistle and a verbal
announcement “1 minute”), and the end of the round will be announced (3 long whistles
and a verbal announcement “end of competition round”).

At the announcement ending the round, contestants must immediately stop working and
put their keyboards on top of their terminals without switching off their computers.
Contestants should then wait at their desks without operating their computers or touching
anything on their desks; an additional announcement will be made instructing them to
leave their tables and exit the competition hall. At this point, contestants may take with
them the contents of their competition envelope.

Grading

The grading system evaluates the submitted tasks after the competition round. For tasks
that require programs as solutions, the submitted source files will be re-compiled under
Linux, enforcing the source file size and compilation time constraints. The compiler
options for Pascal programs are "-O2 –So -XS" and the compiler options for C and
C++ programs are "-O2 –static -lm".

IOI 2002
Yong-In, Korea

Page 103 of 142

The grading system will then execute the compiled program under Linux, enforcing the
task-specific run-time resource constraints. Typically, there will be a CPU run-time limit
and a limit on total memory use. Every limit applies independently for each test case; if
any limit is exceeded, no points will be awarded for that test case. The actual limits will be
specified in the task materials.

If the submission facility accepts a program, that only means that the compilation was
successful and the program correctly solved the simple test case within the resource
constraints, but no more. In particular, it does not mean that the program would obey the
resource constraints when given different input.

The IOI 2002 schedule will specify the times when the grading results and evaluation data
used for grading will be made available to the delegations, and when grading appeals are
to be submitted to the Scientific Committee.

Other Information

A contestant

 trying to interfere with other contestants' activities,
 trying to break the installations or evaluation facilities,
 trying to harmfully interfere with the running of the competition in any way, or
 trying to communicate in any way during a competition round with anyone other

than the competition staff
will be disqualified from the competition.

The competition computers are connected via a local area network for submitting
solutions, running test executions, making backups, and printing. Contestants are not
allowed to access the network for any other purpose or with any tools other than the tools
provided by the organizers. Even sending a single 'ping' command is strictly prohibited.
The competition staff should be contacted for help with any suspected network problems.
Also, contestants are not allowed to make any material accessible to the network from
their computers. The competition facilities are provided over secure connections. The
network traffic is monitored and logged during the competition; a contestant breaking
these rules will be disqualified.

Submitted programs

 are not allowed to access the network,
 are not allowed to fork,
 are not allowed to create files other than those required in the task definition,
 are not allowed to attack the system security or the grader,
 are not allowed to attempt to execute other programs,
 are not allowed to change file system permissions, and
 are not allowed to read file system information other than the input file given in

the task description.
A contestant whose program attempts any of the above will be disqualified.

IOI 2002
Yong-In, Korea

Page 104 of 142

APPENDIX II: Programming Environment

General

Please first check the general information about the competition programming
environment from the Competition Rules.

The main environment for the contest is Linux. Linux is available as a programming
environment (specifications below) and also the servers and evaluation (grading) runs on
Linux. However, we provide the contestants with dual-boot computers where you can
program either in Linux or in Windows environment.

The evaluation is based on source-code submission and the evaluation system compiles
the submitted source code. As a consequence, also the programs written in the Windows
environment are re-compiled for evaluation in Linux (using the same compiler). This is
something that all contestants using Windows must be aware of. For example,
uninitialized variables may cause undefined behavior when executing for the evaluation.

We favor fairly standard operating system installations. But we may modify the
installations for hardware support and security fix.

The compilers used in the competition are GCC for C and C++ programs and Freepascal
for Pascal programs.

Generally, the installations are designed for the following main alternatives:

1. Pascal as the programming language, Freepascal compiler, Freepascal IDE.
2. C/C++ as the programming language, GCC compiler, RHIDE IDE.
3. Editors(emacs, vim, ...), command-line compilation/debugging, a graphical front

end "ddd" to debugging.

Option 3 is targeted primarily for Linux, although it is possible to use Windows Edit and
command-line compilation.

Hardware

The specification is: a PC with a 1.7 GHz Pentium 4 processor, 256 MB RAM, a standard
US keyboard, a mouse, and a 19 inch CRT.

Linux

For Linux, we are using Debian release 3.0 ‘woody’. You can get more information from
Debian's home pages at http://www.debian.org. The tasks are chosen by tasksel with
the following choices:

 X window system

IOI 2002
Yong-In, Korea

Page 105 of 142

 desktop environment
 C and C++

And additional packages are chosen by dselect:

 ddd - The Data Display Debugger, a graphical debugger frontend.
 mc - Midnight Commander - A powerful file manager. - normal version
 mozilla - Mozilla Web Browser - dummy package
 vim - Vi IMproved - enhanced vi editor
 vim-gtk - Vi IMproved - GTK version
 exuberant-ctags - multi-language reimplementation of ctags
 emacs21 - The GNU Emacs editor.
 emacs21-el - GNU Emacs LISP (.el) files.
 joe - user friendly full screen text editor

GCC on Linux:

We use gcc-2.95 which is installed as a part of the Linux Debian woody.

You can learn about the availability of various GCC versions through http://gcc.gnu.org.
If you install a Linux version and include development tools, then you are extremely
likely to get a GCC version.

Pascal on Linux:

You can get the Freepascal software through http://www.freepascal.org, which shows a
number of mirror sites. We have installed the binary version of freepascal 1.0.6. You can
download fpc-1.0.6.ELF.tar (14.3 MB) file, which contains a standard tar archive,
with an installation script. After untarring the archive, you can run the installation script in
the created directory by issuing the command “sh install.sh”.

RHIDE for Linux:

The debian woody doesn't contain the RHIDE package. You can download the tarball file
from http://www.rhide.com.

Pascal IDE for Linux:

You can download the snapshot version of Linux IDE with debugging support. You
should be able to download it at the development section from http://www.freepascal.org.

Linux and Cygwin:

You may want to learn about using Linux and do not want to install it. The GNU tools are
in the core of the Linux facilities, and you can obtain a much larger collection of them
from the DJGPP package (see Windows/gcc). A collection of GNU facilities can also be
obtained from http://www.cygwin.com. This Cygwin package has even more of the feel of
Linux, as they are being used through the bash shell, which is common in Linux systems.

IOI 2002
Yong-In, Korea

Page 106 of 142

Note that the Cygwin is not a part of the competition environment.

Windows

We are using Windows XP. We expect support for the hardware to be available in
Windows XP. You can get information about Windows from
http://www.microsoft.com/windows/.

The windows environment includes vim and emacs as well as notepad.

GCC on Windows:

The GCC compiler version we are using in the windows environment is GCC 2.95.3.

WARNING: If you install Freepascal and GCC (e.g. as in DJGPP) in the same Windows
installation, be sure to have DJGPP in your path before Freepascal, or GCC won't work.
This seems to be because it finds cpp.exe from the pascal binaries and then thinks that the
pascal binary directory is the place for its compiler binaries, which it subsequently fails to
find.

For windows, we are using the DJGPP. You can find out about DJGPP and downloading it
from http://www.delorie.com/djgpp/.

Our current installation includes the following packages:

 v2/copying.dj - DJGPP Copyright info
 v2/djdev203.zip - DJGPP Basic Development Kit
 v2/faq230b.zip - Frequently Asked Questions
 v2/readme.1st - Installation instructions
 v2gnu/bnu2121b.zip - Basic assembler, linker
 v2gnu/fil41b.zip - GNU fileutils
 v2gnu/gcc2953b.zip - Basic GCC compiler
 v2gnu/gdb511b.zip - GNU debugger
 v2gnu/gpp2953b.zip - C++ compiler
 v2gnu/grep24b.zip - GNU Grep
 v2gnu/lss374b.zip - GNU Less
 v2gnu/mak3791b.zip - Make (processes makefiles)
 v2gnu/txi41b.zip - Info file viewer
 rhide15b-20020625-prerelease.zip - RHIDE snapshot (from http://www.rhide.com)

Pascal on Windows:

We have installed Freepascal 1.0.6. See http://www.freepascal.org for obtaining a copy. If
you install the full version dos106full.zip, you just first unzip the file and run
install.exe.

You can use Freepascal with its own IDE.

IOI 2002
Yong-In, Korea

Page 107 of 142

APPENDIX III: User Manual for IOI 2002

GENERAL

Contestant materials

Contestants will get the competition materials in the competition envelope. The envelope
will contain a sheet for a user id and password for the web services. You need them to
access the services.

Selecting operating system

You can select Linux or Windows XP at booting. Competition computers are configured
for dual-booting. Use the cursor key to highlight your choice and type Enter key.

Login

You do not need to login to Windows XP. You can login to Linux with
 username: ioi
 password: ioi

Restarting your computer

In Windows XP, click ‘Start’ and ‘Turn off computer’. From the menu that appears
choose ‘Restart’.

In Linux, you may press Ctrl-Alt-F1 to change console mode. (You can return to X-
Windows mode by pressing Ctrl-Alt-F7.) Then you may press Ctrl-Alt-Del to restart.

If you need help

If you need any assistance (system trouble, go to toilet, whatever), please just raise your
hand and wait for help.

PROGRAMMING

Comment tags for grading

Your program or output file (for output-only tasks) must have certain tags in comments
for the grading system to identify the task and the programming languages (for source
code file). For the source code submission, the syntax will be
TASK: taskname
LANG: LANGUAGE
where LANGUAGE is one of C, C++, or PASCAL. For the output only tasks, the syntax
will be ‘#FILE taskname data’. See the task overviews and task descriptions for
detail.

IOI 2002
Yong-In, Korea

Page 108 of 142

Range of integer variable

The ordinary type ‘integer’ in freepascal has the range of -32768 to +32767. In some
tasks, this may not be enough. Use 32bit variant ‘longint’ type which has the range of -
2147483648 to +2147483647.

Exit value

For C and C++ programmers: make sure that your program terminates with exit(0) or
“return 0” in main(). Exiting with any other value is considered as an incorrect
termination.

A normally terminated Pascal program returns a 0 when it terminates.

Differences between Linux and Windows XP

A program submitted for grading or testing will be compiled using the options given in the
overview sheet. The compiled program will be executed on Linux.

Running programs on a Linux machine differs slightly from running programs on a
Windows machine.

 If you access a pointer variable that points the memory outside your allocation,
your program may stop abnormally.

 If you access outside the boundary of an array, your program may stop
abnormally.

 Linux does not initialize local variables to any predictable value.
These differences mean that your program might work fine on Windows XP and fail on
Linux. Be careful when using pointers, arrays and uninitialized variables to avoid these
problems

TROUBLES

There are some inconveniences for programming in the competition environment. You
can avoid these problems.

RHIDE and debugging problem in Windows XP
Trouble: If you set breakpoints and the program terminates without reaching any of the
breakpoints, the DOS box will be terminated without even a message.
Solution: Set any breakpoints on the first or last line to reach in any case.

RHIDE and black screen in Windows XP
Trouble: If you launch RHIDE in full screen mode and you choose DOS shell, or execute
the program, or exit RHIDE, you may see only a black screen.
Solution: Change to the window mode by pressing Alt+Enter. You may avoid this
problem by launching RHIDE with ‘-S’ option.

IOI 2002
Yong-In, Korea

Page 109 of 142

Freepascal IDE in Linux
Trouble: The function of viewing user screen in FP IDE has some trouble. It breaks the
IDE editing screen.
Solution: Returning of editing mode makes the screen clean again. You may avoid this
problem by using console compilation and debugging.

FORBIDDEN

A contestant

 trying to interfere with other contestants' activities,
 trying to break the installations or evaluation facilities,
 trying to harmfully interfere with the running of the competition in any way, or
 trying to communicate in any way during a competition round with anyone other

than the competition staff
will be disqualified from the competition.

Submitted programs

 are not allowed to access the network,
 are not allowed to fork,
 are not allowed to read or create files directly,
 are not allowed to attack the system security or the grader,
 are not allowed to attempt to execute other programs,
 are not allowed to change file system permissions, and
 are not allowed to read file system information.

A contestant whose program attempts any of the above will be disqualified

User Manual - Addendum

Timing Library will be provided

To measure the CPU usage of the program, we will provide a function called
‘exectime’. See Contest System Users’ Manual Appendix B for detail.

Online Help

C/C++ (including STL manual) and Pascal help file will be available at the competition
web page.

Linux and Web Browser

Trouble: A large amount of output causes mozilla to freeze for several minutes.
Solution: When this happens, run the web browser “opera” and perform an action which
replaces the contents of the box with the large amount of output (e.g., submit a different
test program which produces less output).
Note: The contest system has not been tested with opera; use mozilla when possible.

IOI 2002
Yong-In, Korea

Page 110 of 142

Linux and FreePascal

Trouble: Running the Freepascal IDE from X-Windows, the terminal does not display
correctly.
Solution: Switch to console mode via Ctrl-Alt-F1 before running the FreePascal IDE.
(You should log in again). Ctrl-Alt-F7 switches back to X-Windows.

Linux

Trouble: The RHIDE and FreePascal IDEs do not recognize mouse actions in console
mode.
Solution: Use the Alt-<KEY> hot keys to access the menus, or run RHIDE from X-
Windows.

IOI 2002
Yong-In, Korea

Page 111 of 142

APPENDIX IV: IOI 2002 Contest System Users’
Manual

Version 1.03

INTRODUCTION

The IOI 2002 Contest System is a group of server applications and modules designed to
support International Olympiad in Informatics 2002. Its main functions are to support the
contest by providing submit, test, print, backup/restore facilities during the contest and to
support automated grading of participants’ submissions after the contest. The participants
of the contest are given web-interfaced contest supporting facilities during the contest.
This manual is to provide contest participants with information about how to use the IOI
2002 Contest System during the contest. This manual does not contain information to
setup and maintain the IOI 2002 Contest System for administering the contest.

USER INTERFACE

The user interface of the IOI2002 Contest System is web-based. A user can connect to the
system with a web browser (Microsoft Internet Explorer or Mozilla) using the URL
provided.

The IOI 2002 Contest System’s user interface consists of three Web pages: login page,
main page and restore page.

Login Page

When a user first connects to the IOI 2002 Contest System, a login screen with input
boxes for Login ID and Password will be shown.
Type in login id and password and press Login button to open a new session with the IOI
2002 Contest System. Then the main screen will be displayed.

Contest is not running

When a contest is not running, which means that it is before or after the contest period,
Contest is not running is displayed on the main screen and users cannot use submit or test
facilities. Print and backup/restore facilities, however, are available even when a contest is
not running. Viewing and downloading submitted files is also available when a contest is
not running.

IOI 2002
Yong-In, Korea

Page 112 of 142

Main Page

Login ID : sllee / Time : 2002-07-29 17:35:12 Reload

15:33:20red.in.4

--

--

15:10:01red.in.1

REDTask

Time

File

STRINGTask

14:11:22Time

number.cFile

NUMBERTask

[14:11:56]

IOI2002 Contest
System
Demonstration

Announcement

Submit File

Test Source File

Test Input File

Print File

Backup File

Submit

Test

Print

Backup

RestoreRestore File

1 – Login and time information : The login ID of the user and the current time are shown.
The current time is obtained from the system clock of the hardware where the IOI 2002
Contest System is running. Therefore the time shown is uniform among all participants
regardless of their local machines’ system clocks. Note that the main page should be
reloaded manually to get the current time display updated.

2 – Reload button : Reload the main page from the web server and get the page updated.
Users should manually reload the main page to see their submit or test operations in
progress, to see the reports on submit or test operations when they are finished, or to
update the current time and announcement window displayed. Pressing F5 button on the
keyboard is equivalent to pressing the Reload button.

3 – Accepted submission table : The accepted submission table shows the task name, a
filename, and the time the file is submitted for each of all the tasks of the currently
running contest. Initially, only the task names are shown for the tasks of the day, and
filenames and submission times are left blank. Filenames and submission times are filled
only after a successful submission. A user can follow the HTML link at the filename to
display its content or download the file. A new successful submission will overwrite the
previous submission. There is no way for a user to recover an overwritten submission,
except for starting a new submission process with the old file kept in his computer. Note
that when a user initiates a submission process that will turn out to be successful and
the user never updates his main screen to see the updated submission table, the
previous submission is still overwritten.

There are two kinds of tasks. One accepts a single file (program) and the other (output-
only task) accepts multiple files (output files). In the figure above, ‘NUMBER’ and

1 2

3

4

5

8

6

7

IOI 2002
Yong-In, Korea

Page 113 of 142

‘STRING’ are examples of single-file tasks, and ‘RED’ is an example of an output-only
task which accepts 4 output files.

4 – Announcement window : The announcement window displays announcement
messages from the administrator of the system. The time of announcement is also
displayed. Every user sees the same message. When the administrator puts up a new
announcement message, users must reload the main screen manually to display the
new message. Thus it is advised that the announcement message does not contain any
critical information.

5 – Submit facility : It is used to initiate a submission process. Select a file to be submitted
into Submit File box and press Submit button. During the submission process, the submit
window is replaced by Submission Progress… 0% message. A user should reload the main
screen manually to check the submission process progress and get submission results
displayed.

6 – Test facility : It is used to initiate a test process. Select a source file to be tested into
Test Source File box and its input file into Test Input File box, and press Test button.
During the test process, the test window is replaced by Test Progress… 0% message. A
user should reload the main screen manually to check the test process progress and get test
results displayed.

7 – Print facility : A user may use Print File box and Print button to upload a text file to
be printed.

8 – Backup/restore facility : Backup File box and Backup button can be used to store
user’s file on the IOI 2002 Contest System server. The filenames of backup files are
advised to be in English and follow UNIX filename conventions (alphanumeric, no white
spaces). Press Restore button to display the restore page.

IOI 2002
Yong-In, Korea

Page 114 of 142

Restore Page

Login ID : sllee / Time : 2002-07-29 17:35:12 Reload

delete

delete

delete

delete

2002-08-08 11:51:34파일(non-english filename)

2002-08-07 11:06:12Filename with spaces

2002-08-08 12:09:47test.cpp

delete all

2002-08-06 18:06:11fastbixc.c

Stored Files

9 – Stored files table: The files stored in the IOI 2002 Contest System server using the
backup facility in the main screen are listed in the stored files table. The files in the table
are sorted by the backup time. The files can be displayed or downloaded by following the
HTML links at the filenames in the first column of the table. Click delete on the right of
the filename to delete the file from the server. The file will be permanently deleted.
Clicking delete all at the bottom of the table will delete all the files stored in the server. A
confirmation window will pop up for the delete options.

FEATURES

The IOI 2002 Contest System provides user facilities to help them through International
Olympiad in Informatics. Users can submit solutions to tasks, test solutions, print files,
and backup files. Readers are expected to have a good understanding of IOI contest rules.
Readers who do not have sufficient knowledge are advised to read ‘IOI 2002 Competition
Rules’ first.

Submit

A user may submit a source file or an output file using the submit facility on the main
page. Note that the main screen is not automatically updated as the submission
process progresses. The user must manually reload the main screen (Either by
pressing Reload button or F5 button on the keyboard) to get submission results.
However, once the user starts a submission, the submission process is internally processed

9

IOI 2002
Yong-In, Korea

Page 115 of 142

regardless of user’s updating his or her main screen output. Thus even if the user does not
check submission results (i.e. he/she never updates the main page or he/she immediately
closes the browser after initiating a submission process or the user’s computer is powered
off immediately after initiating a submission process) the submission is processed
unhindered and if the submission is accepted, it will replace the last submission. Also,
reloading the main page frequently will not speed up the submission process.
The number displayed during a submission process as Submission Progress… 0%
indicates the percentage of progression. When the number hits 90%, the submission
process is actually started on the server side.
 A user can have only one submission being processed at a time. A user should wait for
his or her current submission process to finish before attempting to initiate another
submission process. Note that logging out or turning off a user’s machine will not cancel
an ongoing submission process.
A submission is accepted only if it satisfies all the requirements for the task. The
maximum size of a source file or an output file that can be submitted is 1M bytes
(1048576 bytes). If the size exceeds, an error message will be immediately displayed and
the submission process will not start at all. Other requirements for the task will be
examined in the submission process. Failing to meet all the requirements will result in a
submission failure. The table below contains common requirements for a submission to be
accepted. Note that a user program must return exit code of 0. In C or C++, the user
program should do “return 0;” or “exit(0);” at the end of the execution. In Pascal,
the default return code is 0 unless specified otherwise in the source code.

Requirements for user programs
Program exit code 0
Maximum source file size 1M bytes
Maximum output file size (output-only tasks) 1M bytes
Header format Specified per task
Stdout size limit 200k bytes
Stderr size limit 200k bytes
Compile time limit 30 seconds
Execution time limit Specified per task
Memory usage limit Specified per task
Stack size limit Default (8M bytes)

Test

The test facility is similar to the submit facility. The main difference is that a user must
provide his or her own input file. The test facility is not available for an output-only task.
The input file is fed to the user program as stdin and the user program is expected to use
stdout and stderr for outputs. The user program’s stdout and stderr will be shown in the
Test Output window along with other information. All requirements for the task are
examined as in the submission facility.
A test process might take more time than a submission process as submission processes
are given much higher priority by the server. Only one test process is possible at a time.
However, it is possible to proceed with one submission process and one test process at the
same time.

IOI 2002
Yong-In, Korea

Page 116 of 142

Print

Select a file to be printed into Print File box and press Print button. Print Successful will
be displayed if printing is successful and the printing job is fed to the printer spool (which
means that it can still take some time before actual printing). Print Failed means the
printing subsystem of the IOI 2002 Contest System is not available at the time and the
user should try again some other time or consult with an assisting personnel. It may take
some time before the main screen is displayed with either Print Successful or Print Failed
when the file is big or there are many simultaneous printing requests from the users. (This
is due to a system design to suppress excessive printing requests) The maximum size of
the file to be printed is 1M bytes.

Backup

The backup/restore facility can be used to store user’s files on the server. The files can be
as large as 1M bytes and each user is guaranteed to use space for at least 10 files. Select a
file to backup into Backup File box and press Backup button. The restore page will be
displayed with the list of backup files on the server on a successful backup. An error
message will be displayed on the main page on a failure. Press Restore button to display
the restore page. A user may display or download backup files or delete one or all backup
files. Press Reload button on the restore page or backspace key on the keyboard to go back
to the main page.

SECURITY MEASURES

According to ‘IOI2002 Competition Rules’, submitted programs

 are not allowed to access the network,
 are not allowed to fork,
 are not allowed to read or create files directly,
 are not allowed to attack the system security or the grader,
 are not allowed to attempt to execute other programs,
 are not allowed to change file system permissions, and
 are not allowed to read file system information.

The IOI 2002 Contest System has features to enforce above rules. The competition rules
can be enforced at the time a user tries to break the rules or afterwards by examining log
files. The IOI 2002 Contest System supports both ways of enforcing the competition rules.

Resource limitations

A program that a user submitted is run under resource limitations. Process, memory, and
output file size limitations are enforced by the resource limitations set on the user’s
executable file.

IOI 2002
Yong-In, Korea

Page 117 of 142

File accessibility

The running environment of a user program is set up so that the user program cannot
access other files. Moreover, the hardware on which a user program is run is a separate
system from the rest of the hardware including the server and it contains only a sample
input file and a checker for the sample input.

Network security

The hardware where a user program is run is set up in a private network where it can only
access the central system server. Any attempt to connect to the central system server is
monitored from the server side. The private network itself is also packet-monitored.

Logging

All user programs submitted or tested to the server are kept with their output and activity
log. The activity log of the system is kept in three different parts of the system and the
three recordings are cross-checked after the contest.

CONTACT INFORMATION

The IOI 2002 Contest System is developed and maintained by:

Computer Theory & Cryptography Lab.,
School of Computer Science and Engineering,
Seoul National University, Seoul, Korea.

Email to sllee@snu.ac.kr for technical information.

APPENDIX A. ERROR MESSAGES

Web server messages

These messages are displayed in the main page.

Error Message Explanation
Submission failed: Already
processing

The user attempted to start a new submit
process before the previous submit process is
finished.

Submission failed: No file
selected

No file is selected into the Submit File box.
The file path specified is inadequate: retry after
copying the file to some other place.

Submission failed: Contest not
running

The contest is over and the user is not allowed
to start a new submission process.

Test failed: Already processing The user attempted to start a new test process

IOI 2002
Yong-In, Korea

Page 118 of 142

before the previous test process is finished.
Test failed: Select two files Not both files are present in the Test File box

and Test Input box.
The file path specified is inadequate: retry after
copying the file to some other place.

Test failed: Contest not running The contest will be over in less than 5 minutes
and the user is not allowed to start a new test
process.

Source code display failed: Please
retry or consult administrator

Fail to follow the HTML link in the accepted
submissions table.
Check if the filename of the file submitted
follows UNIX filename conventions and retry.

File upload interrupted: Please
retry

The user canceled a file upload (possibly by
pressing cancel button on the web browser) or
a network error occurred.

Print Successful A printing job is successfully spooled.
Print Failed The printing subsystem is not in operation. Try

again after some time. If the problem persists,
consult administrator.

Unknown error Try pressing reload button.

Submit, test output window messages

These messages are displayed inside the submit output window or the test output window.
Other task specific messages are also displayed in the submit output window or the test
output window. See the task description for each task for information on task specific
messages.

Error Message Explanation
! The system failed to process the
job. Please consult administrator

Check your program and consult administrator.

[HEADER CHECK - OK]
[HEADER CHECK - ERROR]
[COMPILE – OK]
[SAMPLE DATA TEST – OK]
[SAMPLE DATA TEST –
ERROR]

output-only task need no testing Test facility is not provided for the output-only
tasks. Use the submit facility for format
checking of output-only tasks.

header format error Check header format.
task name is invalid Check task name field in the header.
execution time limit exceeded! User’s program did not terminate within the

execution time limit per task.
output size limit exceeded! Output size limitation of 200k bytes for each of

stdout and stderr is exceeded and execution of
the program is stopped.

wrong answer Failed to produce correct output with sample

IOI 2002
Yong-In, Korea

Page 119 of 142

test data. This error message is shown in the
submit output window only.

exit code is non-zero All programs should have return code of 0.
Put return 0; of exit(0); at the end of your code
in case it is written in C or C++. For Pascal,
the return code is always 0 unless you
specified in the code differently.

Execution error (invalid memory
reference)

Segmentation fault (possibly due to resource
limitations)

...Submission Accepted!

...Submission Failed! The submitted file could not pass all
submission tests and was not accepted. The
submission is not added to accepted
submission list of the user. In case there was a
pervious accepted submission for the task, the
previous submission is not overwritten and is
still valid accepted submission.

APPENDIX B. MEASURING THE CPU USAGE OF A PROGRAM

Measuring the intermediate CPU usage of a program - Pascal users

The grading system will observe your program's execution time from outside. If you want
to check intermediate execution times during test execution or submission execution, you
may include this line in your code:
{$i extime.inc}
to include the execution function called “exectime”. This function has no parameters
and looks just like a scalar. Its value is the number of milliseconds of execution used so
far. Here's a sample program to demonstrate its use:

program timetest;
{$i extime.inc}
var i, j, k:longint;
begin
k := 0;
 for i := 1 to 100 do
 begin
 for j:=1 to 1000000 do
 begin
 k := i + j + k;
 end;
 end;
 writeln(exectime);
end.

This facility is only available for test executions and submission executions.

Measuring the intermediate CPU usage of a program - C/C++ users

IOI 2002
Yong-In, Korea

Page 120 of 142

The grading system will observe your program's execution time from outside. If you want
to check intermediate execution times during test execution or submission execution, you
may use the ‘exectime’ function, which returns the number of milliseconds your
program has used so far. Here is a sample program to demonstrate its use:

main()
{
 long i, j, k;
 k = 0;
 for (i = 0; i < 100; i++)
 for (j=0; j < 1000000; j++)
 k = i + j + k;
 printf("%d ms\n", exectime());
}

This facility is only available for test executions and submission executions.

IOI 2002
Yong-In, Korea

Page 121 of 142

APPENDIX V: List of Contestants

Gold Medalists (23)

CNTR ID Name Day1 Day2 Score
KOR KORC03 Wanyeong JUNG 260 250 510
POL POLC01 Pawel PARYS 263 195 458
BGR BGRC01 Velin TZANOV 213 235 448
USA USAC03 Tiankai LIU 220 195 415
ROM ROMC01 Radu BERINDE 158 240 398
KOR KORC02 Kyung Yoon OH 200 190 390
RUS RUSC01 Petr MITRITCHEV 130 255 385
TPE TPEC01 Yin WANG 168 210 378
ROM ROMC02 Daniel Octavian DUMITRAN 152 220 372
LVA LVAC01 Aleksandrs BELOVS 186 175 361
RUS RUSC02 Petr KALININ 156 200 356
CHN CHNC01 Yifei ZHANG 180 170 350
EST ESTC01 Martin PETTAI 92 255 347
CHN CHNC02 Qiming HOU 111 235 346
CHN CHNC03 Wei YU 140 200 340
SVK SVKC01 Peter BELLA 139 200 339
IRN IRNC03 Mohammadhossein BATENI 172 160 332
LVA LVAC03 Andrejs IVANOVS 144 185 329
KOR KORC01 Hyung-Sul KIM 170 140 310
CZE CZEC01 Josef CIBULKA 82 225 307
ISR ISRC02 Yair CHUCHEM 176 121 297
SWE SWEC02 Daniel ANDERSSON 131 165 296
VNM VNMC01 Khai TRAN QUANG 126 170 296

Silver Medalists (47)

CNTR ID Name Day1 Day2 Score
USA USAC01 Jacob BURNIM 102 191 293
RUS RUSC04 Dmitri PAVLOV 91 200 291
IDN IDNC01 Widagdo SETIAWAN 156 134 290
UKR UKRC02 Petro LUFERENKO 143 146 289
FRA FRAC04 Benjamin GAILLARD 248 40 288
SVK SVKC03 Tomas DZETKULIC 195 91 286
CAN CANC04 David ZHANG 68 215 283
VNM VNMC02 Hieu NGUYEN VAN 108 172 280
HUN HUNC02 Peter PALLOS 103 175 278
ROM ROMC04 Marius Victor COSTAN 123 155 278
TUR TURC01 Sedat GOKALP 192 80 272
USA USAC02 Adam D'ANGELO 72 200 272
CUB CUBC03 Ronny LÓPEZ TRUJILLO 163 105 268
YUG YUGC01 Dejan KOLUNDZIJA 78 190 268

IOI 2002
Yong-In, Korea

Page 122 of 142

BGR BGRC04 Nikolay NIKOLOV 105 160 265
HRV HRVC03 Luka KALINOVCIC 148 115 263
POL POLC02 Bartosz WALCZAK 167 95 262
YUG YUGC03 Aleksandar ZLATESKI 68 193 261
AUS AUSC04 David GREENAWAY 140 120 260
GEO GEOC01 Nicholas JIMSHELEISHVILI 93 165 258
CAN CANC03 Matei ZAHARIA 84 173 257
NLD NLDC03 Tijmen TIELEMAN 142 115 257
BGR BGRC03 Georgi TSANKOV 167 86 253
NOR NORC03 Geir ENGDAHL 123 130 253
POL POLC03 Karol CWALINA 49 204 253
TPE TPEC02 Cheng-Yu LEE 111 141 252
RUS RUSC03 Pavel MAVRIN 122 129 251
USA USAC04 Alex SCHWENDNER 80 170 250
HUN HUNC03 Gabor PELLADI 170 79 249
IRN IRNC04 Mohammad MOHARRAMI 133 115 248
LTU LTUC01 Viktor MEDVEDEV 148 100 248
CHN CHNC04 Decheng DAI 90 157 247
EST ESTC04 Andres LUUK 226 20 246
TUR TURC04 Semsi Cihan YUCEL 144 100 244
IRN IRNC01 Hamed AHMADI NEJAD 62 177 239
TPE TPEC03 Shu-Chun WENG 128 110 238
DNK DNKC01 Bjarke ROUNE 104 132 236
SGP SGPC02 Jiquan NGIAM 131 104 235
EST ESTC03 Mihkel KREE 109 125 234
SGP SGPC01 Heng Ping Christopher MOH 152 80 232
SVK SVKC02 Jozef TVAROZEK 96 135 231
COL COLC03 Oscar RODRIGUEZ 145 85 230
HRV HRVC01 Ivan SIKIRIC 100 130 230
FIN FINC03 Markus OJALA 98 131 229
GBR GBRC01 Paul JEFFERYS 103 125 228
AUT AUTC02 Lukas STADLER 127 100 227
BLR BLRC01 Maksim OSIPAU 132 94 226

Bronze Medalists (68)

CNTR ID Name Day1 Day2 Score
SVK SVKC04 Radovan BAUER 79 145 224
SWE SWEC01 Erik BERNHARDSSON 98 124 222
POL POLC04 Marcin MICHALSKI 110 110 220
THA THAC04 Wittawat TANTISIRIROJ 145 75 220
DEU DEUC01 Benjamin DITTES 135 84 219
ZAF ZAFC01 David Jacques CONRADIE 113 106 219
HRV HRVC02 Lovro PUZAR 100 116 216
KOR KORC04 Heon JEONG 169 45 214
UKR UKRC04 Andriy STASYUK 71 143 214
FIN FINC01 Veli PELTOLA 68 140 208
FIN FINC04 Olli-Pekka KAHILAKOSKI 145 60 205
THA THAC01 Piyawat LAMSAM 88 117 205

IOI 2002
Yong-In, Korea

Page 123 of 142

MDA MDAC03 Dumitru CIUBATII 118 86 204
NLD NLDC02 Bram KUIJVENHOVEN 124 78 202
GBR GBRC04 Nicholas KREMPEL 90 110 200
BGR BGRC02 Veselin RAYCHEV 118 81 199
BRA BRAC03 Rafael TEIXEIRA PAULINO 159 40 199
DEU DEUC03 Alexander HULLMANN 182 15 197
LTU LTUC02 Vilius NAUDZIUNAS 124 73 197
ARG ARGC01 Pablo DAL LAGO 91 105 196
CAN CANC01 Marcin MIKA 122 70 192
ITA ITAC04 Stefano MAGGIOLO 112 80 192
VNM VNMC03 Nhat LAM XUAN 107 85 192
EST ESTC02 Hendrik NIGUL 177 10 187
ESP ESPC01 Tomas LLORET 106 80 186
HUN HUNC04 Gabor SIMKO 176 10 186
LKA LKAC03 Chethiya ABEYSINGHE 114 70 184
SVN SVNC03 Matej JAN 153 30 183
CUB CUBC01 José David RODRÍGUEZ VELAZCO 88 93 181
BLR BLRC03 Sarge ROGATCH 74 105 179
IRL IRLC04 Martin ORR 110 68 178
FIN FINC02 Olli-Pentti SAIRA 151 26 177
IRN IRNC02 Siavosh BENABBAS 91 86 177
CHE CHEC03 Ruben ANDRIST 138 35 173
TPE TPEC04 Tsung-Chieh CHANG 118 55 173
UKR UKRC03 Volodymyr TKACHUK 72 98 170
ARG ARGC03 Alejandro DEYMONNAZ 124 45 169
BRA BRAC02 Daniel BUENO DONADON 98 70 168
HKG HKGC01 Man-Hon CHAN 108 59 167
LUX LUXC02 Thierry STEINBERG 126 40 166
THA THAC03 Vasan CHIENMANEETAWEESIN 126 40 166
HKG HKGC03 Siu-On CHAN 95 70 165
ARM ARMC02 Davit HAYKAZYAN 98 66 164
BLR BLRC02 Aliaksei SIKORSKI 124 40 164
ARG ARGC02 Diego Alejandro GAVINOWICH 88 75 163
SWE SWEC04 Dan NILSSON 142 20 162
GBR GBRC03 Adam BULL 121 40 161
TUR TURC03 Mustafa Onur KILAVUZ 141 20 161
CZE CZEC02 Pavel CIZEK 85 75 160
HRV HRVC04 Marko ZIVKOVIC 70 90 160
LUX LUXC01 Michel CONRAD 130 30 160
ZAF ZAFC02 Heinrich DU TOIT 87 73 160
LKA LKAC04 Nayana P.SOMARATNA 137 20 157
HKG HKGC04 Koon-Ho WONG 126 30 156
NLD NLDC04 Marijn KRUISSELBRINK 115 40 155
LTU LTUC04 Martynas KRIAUCIUNAS 79 75 154
YUG YUGC02 Nikola TODOROVIC 102 50 152
YUG YUGC04 Aleksandar ILIC 60 92 152
IDN IDNC02 Randy SUGIANTO 111 40 151
ISR ISRC03 Noam RAFHAEL 61 90 151
GEO GEOC04 Alexander TARKHNISHVILI 102 46 148
MEX MEXC01 Jorge DEL RIO 90 55 145

IOI 2002
Yong-In, Korea

Page 124 of 142

ISR ISRC01 Ariel GUTMAN 34 110 144
TUR TURC02 Osman CELEP 58 85 143
MDA MDAC02 Constantin JUCOVSCHI 60 81 141
MDA MDAC01 Dumitru CODREANU 74 66 140
PRT PRTC01 David RODRIGUES 104 35 139
BLR BLRC04 Raman DZVINKOUSKI 115 20 135

Other Participants (137, sorted by ID)

CNTR ID Name
ALB ALBC01 Ariel APOSTOLI
ARG ARGC04 Martin VALDES DE LEON
AUS AUSC01 David ANANIAN-COOPER
AUS AUSC02 Clarence DANG
AUS AUSC03 Alex FLINT
AUT AUTC01 Roland SCHATZ
AUT AUTC03 Christian WIRTH
AUT AUTC04 Thomas WUERTHINGER
AZE AZEC01 Isa ALIYEV
AZE AZEC02 Teymur GULIYEV
AZE AZEC03 Tofig HASANOV
AZE AZEC04 Farid AHMADOV
BIH BIHC01 Emir KUMALIC
BIH BIHC02 Mirza SEJTO
BIH BIHC03 Damir ZEKIC
BIH BIHC04 Senad UKA
BRA BRAC01 Lucas FURUKAWA GADANI
BRA BRAC04 Cesario BARROS MARTINS
CAN CANC02 Jason THEAN
CHE CHEC01 Denis ROSSET
CHE CHEC02 Urban SUPPIGER
CHE CHEC04 David FREY
COL COLC01 Jamer CUEVAS
COL COLC02 Edwin NIÑO
COL COLC04 Juan SARRIA
CUB CUBC02 Alberto Eliseo PACHECO ALLENDE
CUB CUBC04 Ledesma YOGERLAN ALMANZA
CYP CYPC01 Avgoustinos KADIS
CYP CYPC02 George PAPADOPOULOS
CYP CYPC03 Kyriakos MATSIKARIS
CYP CYPC04 Alexis CHRISTOFORIDES
CZE CZEC03 Milan STRAKA
CZE CZEC04 Jiri STEPANEK
DEU DEUC02 Urs GANSE
DEU DEUC04 Melanie SCHMIDT
DNK DNKC02 Michael RASMUSSEN
DNK DNKC03 Ulrik BUCHHOLTZ
DNK DNKC04 Jens BOLDSEN
EGY EGYC01 Dia SAMI

IOI 2002
Yong-In, Korea

Page 125 of 142

EGY EGYC02 Mohamed ABDEL GAWAD
EGY EGYC03 Omar FAWZY
EGY EGYC04 Abd El Kader EL-HAIDARY
ESP ESPC02 Xavier ROCA
ESP ESPC03 Raul VINYES
ESP ESPC04 Antoni-Italo DE MORAGAS
FRA FRAC01 Guillaume RYDER
FRA FRAC02 Chargueraud ARTHUR
FRA FRAC03 Clément GENZMER
GBR GBRC02 Adam LANGLEY
GEO GEOC02 Giorgi BOCHORISHVILI
GEO GEOC03 Zviad METREVELI
GRC GRCC01 Theocharis ATHANASAKIS
GRC GRCC02 Milos TZIOTAS
GRC GRCC03 Xaralampos TSIMPOURIS
GRC GRCC04 Christos SAVVOPOULOS
HKG HKGC02 Siu-Man CHAN
HUN HUNC01 Jozsef MARTON
IDN IDNC03 Ilham Winata KURNIA
IDN IDNC04 Felix HALIM
IND INDC01 Rahil ALI
IND INDC02 Anubhav GUPTA
IND INDC03 Vivek KAPOOR
IND INDC04 Adnan RAJA
IRL IRLC01 Eamon PHELAN
IRL IRLC02 Robert CUNNINGHAM
IRL IRLC03 Daniel IRVINE
ISR ISRC04 Michael KARASIK
ITA ITAC01 Paolo CODENOTTI
ITA ITAC02 Alessio ORLANDI
ITA ITAC03 Maurizio SAMBATI
KAZ KAZC01 Nurzhan BAKIBAYEV
KAZ KAZC02 Khairosh YERZHAN
KAZ KAZC03 Anton NIKOLAYEV
KAZ KAZC04 Zhanibek DATBAYEV
KGZ KGZC01 Kirill BARYSHNIKOV
KGZ KGZC03 Stanislav VASHUK
KGZ KGZC04 Abdimital PAZYLOV
KWT KWTC01 Ali MUBARAK
KWT KWTC02 Ibrahim ALMAYAS
KWT KWTC03 Saleh ALSAFFAR
LKA LKAC01 Harshana DANTANARAYANA
LKA LKAC02 Amila DE SILVA
LTU LTUC03 Dainius KUNIGAUSKAS
LUX LUXC03 Jean-Marc HENGEN
LUX LUXC04 Sidhath MYSORE
LVA LVAC02 Karlis GANGIS
LVA LVAC04 Sergejs KOZLOVICS
MAC MACC01 Chi Hou HO
MAC MACC02 Chon Kit WONG

IOI 2002
Yong-In, Korea

Page 126 of 142

MAC MACC03 Cheng Chun NG
MAC MACC04 Iat Man IEONG
MDA MDAC04 Eugen SORBALO
MEX MEXC02 Eduardo LOPEZ
MEX MEXC03 Jesus PUENTE
MEX MEXC04 Manuel TORRES
MKD MKDC01 Aleksovski DARKO
MKD MKDC02 Stojanovska VESNA
MKD MKDC03 Atanasov VASIL
MKD MKDC04 Mihajlovski NIKOLCE
MLT MLTC01 Joel AZZOPARDI
MLT MLTC02 Christian COLOMBO
MNG MNGC01 Tulga TUMENDALAI
MNG MNGC02 Gansukh BATKHUYAG
MNG MNGC03 Dorjnamjil CHANDMANI
MNG MNGC04 Otgontugs MIIMAA
MOZ MOZC01 Sonia RAITHATHA
MOZ MOZC02 Decio MACAMO
MOZ MOZC03 Bachir BACHIR
MUS MUSC01 Vishwaduthsingh GUNGA
MUS MUSC02 Mohammad Zyaad JAUNNOO
MUS MUSC03 Dominique Francois ADOLPHE
MUS MUSC04 Rowan Rishi JUGERNAUTH
NLD NLDC01 Cynthia KOP
NOR NORC01 Dag SELJEBOTN
NOR NORC02 Tormod LANDET
NOR NORC04 Daniel LOKSHTANOV
PRT PRTC02 Nuno PEREIRA
PRT PRTC03 Pedro PEREIRA
PRT PRTC04 Andre COIMBRA
ROM ROMC03 Cosmin RAIANU
SGP SGPC03 Junjie LIANG
SGP SGPC04 Kee Tee Lawrence TAN
SVN SVNC01 Ruben SIPOS
SVN SVNC02 Ivo LIST
SVN SVNC04 Tomaz GREGOREC
SWE SWEC03 Carl NETTELBLAD
THA THAC02 Pitchaya SITTHI-AMORN
TKM TKMC02 Gurbannazar REJEPOV
TKM TKMC03 Nagmat NAZAROV
TKM TKMC04 Serdar MUHAMMETBERDIYEV
UKR UKRC01 Oleksiy HLUKHOVSKIY
VEN VENC01 Alfredo Enrique ROMAN REYES
VEN VENC02 Alicson RUBIO
VEN VENC03 Johan VIVAS
VNM VNMC04 Son NGO THANH
ZAF ZAFC03 Graham Leslie POULTER
ZAF ZAFC04 Harry Zondberg WIGGINS

IOI 2002
Yong-In, Korea

Page 127 of 142

APPENDIX VI: Contestant Questionnaire

Questions for Contestants about IOI 2002 Competition

Which Operation System(s) did you use?
 Day1: Linux Windows XP
 Day2: Linux Windows XP

Which programming language(s) did you use?
 Day1: Pascal C C++
 Day2: Pascal C C++

Which programming editor(s) did you use?
 FreePascal IDE RHIDE Emacs
 vi/vim notepad(win) joe(Linux)
 Other: __________________

Which debugger(s) did you use?

 FreePascal IDE RHIDE using extra printf/writeln statements
 gdb ddd Other: ________

What other tools did you use during the competition days?

Please grade the Grading System and the Web services:
 Usability Response Time Do You Like It
 Easy Hard Slow Fast No Much
Submit - - - - - - - - - - - -
Testing - - - - - - - - - - - -
Print - - - - - - - - - - - -
Backup - - - - - - - - - - - -

Please rank the six tasks:
 Understand It Find Algorithm Write Program
 Easy Hard Easy Hard Easy Hard
FROG - - - - - - - - - - - -
UTOPIA - - - - - - - - - - - -
XOR - - - - - - - - - - - -
BATCH - - - - - - - - - - - -
BUS - - - - - - - - - - - -
RODS - - - - - - - - - - - -

Which task did you like BEST of all? _________
Which task did you like LEAST of all? __________

Was it useful to receive the contents of your home directory after the contest?
 Yes No

IOI 2002
Yong-In, Korea

Page 128 of 142

Are you subscribed to the IOI-LIST (mailing list)?
 Yes No

Suggestions for improving the Linux competition environment?
Suggestions for improving the Windows competition environment?
Suggestions for improving the Grading System competition environment?
Any other comments?

Brief Summary

There were 276 contestants in IOI 2002. By end of IOI 2002, we had received 103
completed forms. (about 37%).

 About 3/5 of the respondents use Windows XP and 2/5 of them use Linux.
 About 4/5 of Pascal users use Windows XP. About 5/9 of C/C++ users use

Linux.

 About 2/5 of the respondents use Pascal, 1/3 use C++, and 1/5 use C.
 For Windows XP users, about 3/5 use Pascal. 2/7 use C++, and 1/6 use C.
 For Linux users, about 3/7 use C++, 1/3 use C, and 1/5 use Pascal.

 Very few use both or switch the OS and the compiler between competition days.

 The FreePascal IDE and RHIDE are used by more than 1/3 of respondents.
 Emacs and vim are used by about 1/7. Notepad is about 1/9.

 About 2/3 use debuggers integrated with IDE.
 Almost 1/2 use extra printf/writeln statements in the program code.
 About 1/8 use external debuggers, such as gdb.

 Calculators and editors are mentioned as other tools used.

 The majority think the grading system of IOI 2002 easy and fast to use.

 BATCH is somewhat hard to understand. FROG and RODS are easier to

understand.

 About 1/2 of respondents rate UTOPIA and BUS as very hard to find algorithm.
 XOR and BATCH are considered slightly harder; FROG and RODS slightly

easier.

 RODS is hardest to write program. (though it is one of easier tasks to find
algorithm.) BUS is considered slightly harder.

 FROG is slightly easier. Other tasks are around the middle.

 FROG is likable most by 1/3. RODS by 2/9. Other tasks are about 1/10.

IOI 2002
Yong-In, Korea

Page 129 of 142

 UTOPIA, XOR and BUS are dislikable most by 2/9.

 More than 3/4 think that it is useful to receive the contents of the home
directory.

 Less than 1/4 of respondents were subscribed to the IOI-LIST.

OS

 Linux Windows XP Both

Day 1 40
(38.8%)

60
(58.3%)

3
(2.9%)

Day 2 40
(38.8%)

62
(60.2%)

1
(1.0%)

Language

 Pascal C C++ Pascal & C C & C++

Day 1 44
(42.7%)

23
(22.3%)

34
(33.0%)

1
(1.0%)

1
(1.0%)

Day 2 44
(42.7%)

24
(23.3%)

34
(33.0%)

0
(0%)

1
(1.0%)

OS & Language

 Pascal C C++
Linux 9 13 18

Windows XP 35 10 17

Editor (multiple selections)

FreePascal IDE 39
(37.9%)

RHIDE 37
(35.9%)

Emacs 13
(12.6%)

Vi/vim 16
(15.5%)

Notepad (win) 12
(11.7%)

Joe (Linux) 1
(1.0%)

Other* 5
(4.9%)

IOI 2002
Yong-In, Korea

Page 130 of 142

 other editors: edit(2), wordpad, kate, mcedit

Debugger (multiple selections)

FreePascal IDE 30
(29.1%)

RHIDE 36
(35.0%)

Extra printf/writeln statements 47
(45.6%)

gdb 11
(10.7%)

ddd 3
(2.9%)

Other Tools Used

Linux users bash script (4), bc (10), cat (2), diff, gnome calculator (4), gprof, grep,
joe, kate, kedit, less, make (2), mc (7), nano, perl (2), ps, time, xcalc

Windows users debug.com, edit.com (2), notepad (8), windows calculator (20)

Grading System Usability

 No
answer

1
(Easy) 2 3 4 5

(Hard) Average

Submit 3
(2.9%)

77
(74.8%)

16
(15.5%)

4
(3.9%)

2
(1.9%)

1
(1.0%) 1.34

Testing 6
(5.8%)

63
(61.1%)

21
(20.4%)

8
(7.8%)

3
(2.9%)

2
(1.0%) 1.56

Printing 15
(14.6%)

69
(67.0%)

7
(6.8%)

7
(6.8%)

2
(1.9%)

2
(1.9%) 1.39

Backup 12
(11.7%)

74
(71.8%)

10
(9.7%)

4
(3.9%)

1
(1.0%)

2
(1.9%) 1.32

Grading System Response Time

 No
answer

1
(Slow) 2 3 4 5

(Fast) Average

Submit 3
(2.9%)

3
(2.9%)

7
(6.8%)

6
(5.8%)

18
(17.5%)

66
(64.1%) 4.37

Testing 8
(7.8%)

4
(3.9%)

6
(5.8%)

9
(8.7%)

19
(18.5%)

57
(55.3%) 4.25

Printing 22
(21.4%)

3
(2.9%)

2
(1.9%)

11
(10.7%)

16
(15.5%)

49
(47.6%) 4.31

IOI 2002
Yong-In, Korea

Page 131 of 142

Backup 13
(12.6%)

4
(3.9%)

1
(1.0%)

6
(5.8%)

12
(11.7%)

67
(65.0%) 4.52

Do you like the Grading System?

 No
answer

1
(No) 2 3 4 5

(Much) Average

Submit 3
(2.9%)

3
(2.9%)

3
(2.9%)

13
(12.6%)

27
(26.2%)

54
(52.5%) 4.26

Testing 8
(7.8%)

5
(4.8%)

7
(6.8%)

11
(10.7%)

28
(27.2%)

44
(42.7%)

4.04

Printing 21
(20.4%)

3
(2.9%)

3
(2.9%)

14
(13.6%)

17
(16.5%)

45
(43.7%) 4.20

Backup 14
(13.6%)

3
(2.9%)

7
(6.8%)

16
(15.5%)

15
(14.6%)

48
(46.6%) 4.10

Task: Understanding

 No
answer

1
(Easy) 2 3 4 5

(Hard) Average

FROG 2
(1.9%)

45
(43.7%)

31
(30.1%)

17
(16.5%)

5
(4.9%)

3
(2.9%) 1.91

UTOPIA 2
(1.9%)

31
(30.1%)

32
(31.1%)

16
(15.5%)

12
(11.7%)

10
(9.7%) 2.39

XOR 3
(2.9%)

46
(44.7%)

29
(28.1%)

11
(11.7%)

5
(4.9%)

9
(8.7%) 2.02

BATCH 2
(1.9%)

14
(13.6%)

19
(18.4%)

29
(28.2%)

26
(25.2%)

13
(12.6%) 3.05

BUS 2
(1.9%)

27
(26.2%)

33
(32.0%)

23
(22.3%)

9
(8.7%)

9
(8.7%) 2.41

RODS 2
(1.9%)

50
(48.6%)

27
(26.2%)

18
(17.5%)

4
(3.9%)

2
(1.9%) 1.82

Task: Finding Algorithm

 No
answer

1
(Easy) 2 3 4 5

(Hard) Average

FROG 2
(1.9%)

24
(23.3%)

33
(32.0%)

22
(21.4%)

15
(14.6%)

7
(6.8%) 2.49

UTOPIA 2
(1.9%)

1
(1.0%)

3
(2.9%)

15
(14.6%)

31
(30.1%)

51
(49.5%) 4.27

XOR 1
(1.0%)

4
(3.9%)

9
(8.7%)

19
(18.4%)

29
(28.2%)

41
(39.8%) 3.92

BATCH 2 2 5 22 39 33 3.95

IOI 2002
Yong-In, Korea

Page 132 of 142

(1.9%) (1.9%) (4.9%) (21.4%) (37.9%) (32.0%)

BUS 1
(1.0%)

1
(1.0%)

7
(6.8%)

15
(14.6%)

33
(32.0%)

46
(44.6%) 4.14

RODS 2
(1.9%)

22
(21.4%)

31
(30.1%)

21
(20.4%)

16
(15.5%)

11
(10.7%) 2.63

Task: Writing Program

 No
answer

1
(Easy) 2 3 4 5

(Hard) Average

FROG 2
(1.9%)

24
(23.3%)

27
(26.2%)

23
(22.4%)

20
(19.4%)

7
(6.8%) 2.59

UTOPIA 4
(3.9%)

20
(19.4%)

21
(20.4%)

20
(19.4%)

15
(14.6%)

23
(22.3%) 3.00

XOR 2
(2.0%)

10
(9.7%)

25
(24.3%)

28
(27.2%)

19
(18.4%)

19
(18.4%) 3.12

BATCH 3
(2.9%)

16
(15.5%)

27
(26.2%)

23
(22.4%)

16
(15.5%)

18
(17.5%) 2.93

BUS 9
(8.7%)

8
(7.8%)

10
(9.7%)

30
(29.1%)

27
(26.2%)

19
(18.5%) 3.41

RODS 2
(1.9%)

3
(2.9%)

14
(13.6%)

28
(27.2%)

18
(17.5%)

38
(36.9%) 3.73

Preferring Tasks

 No mark FROG UTOPIA XOR BATCH BUS RODS
Best 3

(2.9%)
34

(33.0%)
13

(12.6%)
8

(7.8%)
10

(9.7%)
12

(11.7%)
23

(22.3%)
Least 5

(4.9%)
4

(3.9%)
23

(22.3%)
23

(22.3%)
17

(16.5%)
22

(21.4%)
9

(8.7%)

Receiving Contents of Students’ Home Directories

No answer Useful Not useful
6

(5.8%)
79

(76.7%)
18

(17.5%)

IOI-LIST

 YES NO
Are you subscribed to the
IOI-LIST?

23
(22.3%)

80
(77.7%)

IOI 2002
Yong-In, Korea

Page 133 of 142

Written Comments

Linux Environment

1: Install RHIDE’s help on Linux. Whenever I accidentally pressed the right mouse button
I got a segmentation fault. Fix the mouse on the Linux shell.
8: ZSH was not installed under Linux.
14: Four Manager is very good shell, and it is free.
15: text mode 80x50.
18: Configure RHIDE problem.
23: Create shortcuts on desktop.
35: KDM maybe ? Need FTE.
42: The compiler options for g++ specified on the task summary sheet worked under
Windows, but under Linux only a “.out” file was generated, no “.exe”, so I could not make
use of Linux because I had never used g++ before.
43: FTE editor. Nvidia drivers, 1600X1200 resoltion.
45: GPERF was missing - for generating perfect hash functions.
46: Privileged.
72: User screen feature of RHIDE. RHIDE Help files. RHIDE doesn’t work in X. Mouse
in console mode. RHIDE had a few crashes.
82: RHIDE 1.5 is unstable.
85: The tools used on Linux are a little bit unstable. The best example is RHIDE. Having
the newest version is not the same as having the best version. Also, RHIDE would have
worked much better if you gave us root access, which I think is not impossible.
87: Linux was not properly configured. Improve configuration.
99: More usable version of RHIDE
101: Use VESA VGA console mode for better console resolutions.

Windows Environment

1: Choose a windows version on which RHIDE works.
10: I don’t like RHIDE very mush. The amount of code I can see on screen is small, and
the program is unstable. It would be nice to have a Windows (not Dos) based IDE, though
I don’t if it’s possible.
14: Borland C++ is very good thing.
15: File Manager (Any).
16: The FP crashes if memory limits exceeds. Can this be fixed ?
19: The RHIDE didn’t work with FPC compiler. Although it was said before competition
that it wound. That’s not fair. There should have been file manager provided (for example
windows commander) for Win XP users.
21: There should be windows commander available.
29: Use Windows 98se instead of WinXP, because RHIDE halts very often.
31: Make them stable.
33: I missed some file manager like Norton Commander.
34: RHIDE is very unstable with Win XP. Use Win 98.
37: RHIDE is not stable enough and it’s quite old and looks very stupid, so new IDE
would be nice.
38: File manager (like FAR, WC, …). Shortcuts on Desktop.

IOI 2002
Yong-In, Korea

Page 134 of 142

42: Native code editor would have been very useful. RHIDE is unstable in 50 line mode
and responds slowly with the “-S” option, so a state of the art editor with a resizable
window and syntax highlighting indentation would have been more ergonomic for coding.
60: RHIDE was very non stable.
63: More editors.
64: Better editors, e.g. Editplus or Writesource.
72: XP crashes consistently. Solution : use ’98. Windows was very unstable, if you offer
an environment, make sure it works correctly, so as not to leave some people with
disadvantages. Don’t let people down.
73: RHIDE not crashing; Visual C++.
74: Microsoft VC++ would be nice good compiler and debugger although it’s not gcc
compatible. But it’s the only really useful Windows programming environment. Windows
2000 would be more useful.
75: Make it crash safe.
76: RHIDE doesn’t work.
79: Please use RHIDE with Win 98 and not with Win XP which accidentally crashes.
80: There are some problems with Freepascal IDE.
81: Include turbo Pascal as well.
84: Better IDE than RHIDE.
97: Add FAR(or NC or sth like it), BP.
98: Include FAR Manager (http://www.Farmanager.com) or any similar program. In
Linux we have midnight commander, but no corresponding software in Windows XP.
99: More usable version of RHIDE that does not crash.

Grading System

8: You might want to disallow multiple logins form the same account in the web services
for security reasons. The test facility checks for program headers. Thus, to test a simple
test program (say, Windows vs. Linux differences), one has to include a valid program
header (and be limited by that task’s memory and the limits). There could be an “accept
submission regardless of whether it passes the sample input” checkbox on the submission
page. Grading on a curve needs to be revised. It is unfair in its current form.
10: If a program (e.g. FROG) uses too much memory (over 64Mb), the error message was
something like “Bad memory reference.” I think it should have been something more
informative. I think the XOR format checker should have been stricter. The current
checker didn’t notice trivial format errors, such as missing number of rectangles on second
line. Also, for the sake of similarity, the submit program could have tested that the given
rectangles really are a solution, at least for the first input.
29: Make the results show times and answers on each test case, as on IOI 2001.
43: Make it so you don’t have to press reload.
44: Use something that works in lynx.
50: The grading system should be available from command line. (Using X web browser
and mouse is very uncomfortable).
72: The header format was too strict. It should allow extra spaces.
83: It must work no crashes. Should work with more than I serves.
85: The response time of your grader was far from being good. It took quite some time for
my requests to be processed.
92: “Test” in grading system is not useful. Some script or batch file would be more useful
for testing. Maybe the refresh could be automatically.
97: Make not need to “Reload”.

IOI 2002
Yong-In, Korea

Page 135 of 142

99: Quite ok, but using “Reload” is uncomfortable.
101: Pick up errors in output format for output only tasks.

Other Comments

4: Test data for “open test data” problems should be uploaded to the server for contestants
to download in case the input files are erased accidentally.
8: The browser’s homepage could have been set to the IP address for the web services.
The web page should have included task related materials such as inputs for “XOR” and
the library for “RODS.” Why limit the size of stderr if you can just redirect it to /dev/null?
It seems unreasonable for a contestant to lose points just because (s)he forgot to remove
debugging information from his/her code.
9: we were forbidden to bring food with us, and we weren’t given any food, except those
cookies. So I was hungry.
13: There is no file manager on IOI. It makes work more hard.
16: Although XOR was a hard task, the idea of having a task with relative scoring is nice
and makes the competition more interesting. Continue with the hard work!
31: More food and water, less cookies, less strict rules day before the competition.
43: Warn about extra output for submissions.
45: Internet competition.
65: The system should be able to auto refresh.
68: Install games and mp3s on the computers.
69: Provide contestants with free music and headphones.
70: Would be preferable if knowledge of specialized algorithms and especially important
insights (e.g. O(n) for BATCH, solution for BUS) not be required as this unfairly benefits
certain algorithms over others. It is better if questions asked for tricky applications of
general algorithms (as in IOI 2002, CEOI 2002) rather than direct applications of more
obscure algorithms which competitors can hardly expect to derive and prove correctness
within 5 hours e.g. minimum diameter spanning tree.
72: More question time(an hour is too few). Time limit for tasks more permissive.
75: Make less mathematical and more algorithmic tasks, and at least one easy task per
day.
81: The problems were so hard. Make it easy next time.
82: I should be able to see the sources I have submitted. I should also be able to test the
sources I submitted (without having to select the file on my hard disk which might be
different from the one submitted) I think a ‘just submitted program’ option should be
added.
85: Scores were reported pretty late. I think that, due to the nature of the graders, you
could have shown us our scores on the screens of our Woojungwon stations, might after
the end of the competition.

IOI 2002
Yong-In, Korea

Page 136 of 142

Appendix VII: Delegation Questionnaire

Questions about IOI 2002 Competition

What do you think about the task?
 Suitability To Understand It To Translate It
 No Much Easy Hard Easy Hard
FROG - - - - - - - - - - - -
UTOPIA - - - - - - - - - - - -
XOR - - - - - - - - - - - -
BATCH - - - - - - - - - - - -
BUS - - - - - - - - - - - -
RODS - - - - - - - - - - - - Which task
did you like BEST of all? _________
Which task did you like LEAST of all? __________

Do you like the idea of output-only tasks?
 Yes No

Do you like the idea of the relative scoring?
 Yes No

Please grade the Grading System and the Web services:
 Usability Response Time Do You Like It
 Easy Hard Slow Fast No Much
Submit - - - - - - - - - - - -
Testing - - - - - - - - - - - -
Print - - - - - - - - - - - -
Backup - - - - - - - - - - - -

Do you find it useful to receive the contents of the students’ home directories after the
contest?
 Yes No

What is your opinion of the 1-page solution explanation handout?
 Useful Not useful
 Too detailed Just right Not detailed enough

Are you subscribed to the IOI-LIST (mailing list)?
 Yes No

Suggestions for improving the Linux competition environment?
Suggestions for improving the Windows competition environment?
Suggestions for improving the Grading System competition environment?
Any other comments?

IOI 2002
Yong-In, Korea

Page 137 of 142

Brief Summary

There were 78 delegations at IOI 2002. By the end of IOI 2002, we had received 44
completed forms (almost 56%).

 All tasks are considered to suitable for the IOI competition. FROG is considered
most suitable and UTOPIA is least.

 BATCH is considered hardest to understand, followed by UTOPIA. XOR and

FROG are easy to understand.

 BATCH and RODS are rated harder to translate. XOR is easiest.

 RODS and FROGS are likable most by 2/9.
 XOR and UTOPIA are dislikable most by 2/9.
 The preferences are spitted evenly.

 Over 3/4 of respondents supports the idea of output-only tasks.
 Over 5/6 of respondents supports the idea of the relative scoring.

 The majority think the grading system of IOI 2002 easy and fast.

 The respondents definitely think that it is useful to receive the contents of

students’ home directories.

 The respondents think that 1-page solution handout is useful and just right.
Some people think that it is not detailed enough.

 More than 1/4 of respondents were not subscribed to the IOI-LIST.

Task Suitability

 No
answer

1
(Less)

2 3 4 5
(Much)

Average

FROG 2
(4.5%)

0 1
(2.3%)

7
(15.9%)

9
(20.5%)

25
(56.8%)

4.38

UTOPIA 2
(4.5%)

6
(13.6%)

4
(9.1%)

5
(11.4%)

14
(31.8%)

13
(29.6%)

3.57

XOR 3
(6.8%)

1
(2.3%)

6
(13.6%)

11
(25.0%)

7
(15.9%)

16
(36.4%)

3.76

BATCH 2
(4.5%)

3
(6.8%)

7
(15.9%)

3
(6.8%)

13
(29.6%)

16
(36.4%)

3.76

BUS 2
(4.5%)

2
(4.5%)

2
(4.5%)

7
(16.0%)

11
(25.0%)

20
(45.5%)

4.07

RODS 2
(4.5%)

0
(0%)

5
(11.4%)

2
(4.5%)

15
(34.1%)

20
(45.5%)

4.19

IOI 2002
Yong-In, Korea

Page 138 of 142

Task Understandability

 No
answer

1
(Easy)

2 3 4 5
(Hard)

Average

FROG 2
(4.5%)

15
(34.1%)

15
(34.1%)

10
(22.8%)

2
(4.5%)

0
(0%)

1.98

UTOPIA 2
(4.5%)

15
(34.1%)

12
(27.3%)

7
(15.9%)

7
(15.9%)

1
(2.3%)

2.21

XOR 2
(4.5%)

20
(45.5%)

15
(34.1%)

4
(9.1%)

0
(0%)

3
(6.8%)

1.83

BATCH 2
(4.6%)

10
(22.7%)

12
(27.3%)

6
(13.6%)

10
(22.7%)

4
(9.1%)

2.67

BUS 3
(6.8%)

17
(38.6%)

14
(31.8%)

5
(11.4%)

2
(4.6%)

3
(6.8%)

2.02

RODS 3
(6.8%)

17
(38.6%)

12
(27.3%)

5
(11.4%)

6
(13.6%)

1
(2.3%)

2.07

Task Translatability

 No
answer

1
(Easy)

2 3 4 5
(Hard)

Average

FROG 6
(13.7%)

15
(34.1%)

9
(20.4%)

9
(20.4%)

4
(9.1%)

1
(2.3%)

2.13

UTOPIA 6
(13.6%)

12
(27.3%)

13
(29.5%)

9
(20.5%)

4
(9.1%)

0
(0%)

2.13

XOR 6
(13.6%)

17
(38.6%)

9
(20.5%)

8
(18.2%)

4
(9.1%)

0
(0%)

1.97

BATCH 6
(13.6%)

10
(22.7%)

13
(29.6%)

7
(15.9%)

6
(13.6%)

2
(4.6%)

2.39

BUS 6
(13.6%)

13
(29.6%)

10
(22.7%)

12
(27.3%)

1
(2.3%)

2
(4.5%)

2.18

RODS 6
(13.6%)

16
(36.4%)

6
(13.6%)

4
(9.1%)

9
(20.5%)

3
(6.8%)

2.39

Preferring Tasks

 No mark FROG UTOPIA XOR BATCH BUS RODS
Best 2

(4.5%)
9.5

(21.6%)
7

(15.9%)
5.5

(12.5%)
5

(11.4%)
5

(11.4%)
10

(22.7%)
Least 6

(13.6%)
2

(4.5%)
9

(20.5%)
10

(22.7%)
8

(18.2%)
4

(9.1%)
5

(11.4%)

Note:

 A delegation marked both of FROG and XOR for “BEST.” (We count it as 0.5,
each)

 A delegation marked “All are OK” for “LEAST.” (We count it as “No mark”)

IOI 2002
Yong-In, Korea

Page 139 of 142

The Idea of Output-Only and Relative Scoring

 YES NO
Do you like the idea of
output-only Tasks?

34.5
(78.4%)

9.5
(21.6%)

Do you like the idea of
the relative scoring?

37
(84.1%)

7
(15.9%)

Note:

 A delegation was divided in opinion on output-only tasks. The leader claims
“NO” and the deputy leader claims “YES.” (We count it as 0.5, each)

Grading System Usability

 No
answer

1
(Easy) 2 3 4 5

(Hard) Average

Submit 10
(22.7%)

21
(47.7%)

9
(20.4%)

2
(4.6%)

0
(0%)

2
(4.6%) 1.62

Testing 10
(22.7%)

18
(40.9%)

11
(25.0%)

4
(9.1%)

1
(2.3%)

0
(0%) 1.65

Printing 9
(20.4%)

25
(56.8%)

5
(11.4%)

5
(11.4%) 0 0 1.43

Backup 9
(20.5%)

21
(47.7%)

8
(18.2%)

6
(13.6%) 0 0 1.57

Grading System Response Time

 No
answer

1
(Slow) 2 3 4 5

(Fast) Average

Submit 12
(27.3%)

0
(0%)

1
(2.3%)

11
(25.0%)

3
(6.8%)

17
(38.6%) 4.13

Testing 12
(27.3%)

0
(0%)

2
(4.5%)

10
(22.7%)

4
(9.1%)

16
(36.4%) 4.06

Printing 13
(29.5%)

0
(0%)

0
(0%)

10
(22.8%)

2
(4.5%)

19
(43.2%) 4.29

Backup 13
(29.5%)

0
(0%)

1
(2.3%)

9
(20.4%)

5
(11.4%)

16
(36.4%) 4.16

Do you like the Grading System?

 No
answer

1
(No) 2 3 4 5

(Much) Average

Submit 8 2 1 3 11 19 4.22

IOI 2002
Yong-In, Korea

Page 140 of 142

(18.2%) (4.5%) (2.3%) (6.8%) (25.0%) (43.2%)

Testing 8
(18.2%)

0
(0%)

0
(0%)

5
(11.4%)

11
(25.0%)

20
(45.4%) 4.42

Printing 8
(18.2%)

0
(0%)

0
(0%)

4
(9.1%)

7
(15.9%)

25
(56.8%) 4.58

Backup 8
(18.2%)

0
(0%)

0
(0%)

7
(15.9%)

6
(13.6%)

23
(52.3%) 4.44

Receiving Contents of Students’ Home Directories

Useful Not useful
42

(95.5%)
2

(4.5%)

Opinion on the 1-page solution handout (multiple selections)

Useful 31
(70.5%)

Not useful 1
(2.3%)

Too detailed 0
(0%)

Just right 17
(38.6%)

Not detailed enough 11
(25.0%)

 13 delegations marked both of “Useful” and “Just right.”
 3 delegations marked both of “Useful” and “Not detailed enough.”

IOI-LIST

 YES NO
Are you subscribed to the
IOI-LIST?

32
(72.7%)

12
(27.3%)

Written Comments

Linux Environment

2: RHIDE IDE still has lot of bugs, we really need it
10: Try to document all the RHIDE bugs, and make a manual of them
14: For Linux, it is better to provide the environment under X window, and the tools with
better GUI

IOI 2002
Yong-In, Korea

Page 141 of 142

28: Greater variety of useful editors we suggest FTE
31: To delete bugs in IDE and RHIDE
35: Stability of competition environment (mainly IDEs) still needs to be improved.
Alternative or additional IDEs might be made available.
36: We need a better Pascal compiler.

Windows Environment

2: RHIDE IDE still has lot of bugs, we really need it
6: We need the better IDE
10: Try to document all the RHIDE bugs, and make a manual of them
30: Commercial compilers / tools are desirable
31: To delete bugs in IDE and RHIDE
35: Stability of competition environment (mainly IDEs) still needs to be improved.
Alternative or additional IDEs might be made available.
36: We need a better Pascal compiler

Grading System

2: The way to grade “relative score” is good to identify who the best. However, it is not
good for average contestant. The suggestion is to improve the formula of the grading
system
14: It is better to make the interface more easy and the response time short for the Grading
system
20: The grading system should give more response. The checker programs find out one
reason to reject the result if it is not correct, you should write that reason to the checker
response file. Also, when a program in a test case does not meet the time limit, it would be
give to know when the program execution is cut. Naturally, it would be very useful to
have the running time in cases, when the program solves the case within the time limit.
22: The idea of relative scoring seems to be natural for output only tasks. We suggest to
add source file management tool to the default installation
25: Start to have problem in area of parallel algorithms
28: Need to constantly refresh web page to get status of test run is annoying (though not
critical). Suggest an applet would improve this situation.
20: Whole system should be more stable.
37: Format checkers for all batch, library and output only tasks are an excellent idea and
should be continued

Other Comments

5: Pascal and C-compiler also installed on the translator’s machines. It would be nice to
assume that people are fair and let them use internet while translating tasks.
More time for discussion on GA meetings. Less security restrictions, like forcing students
to stay in their rooms on the night before competition. ‘extime’ library for measure
execution times should be provided to students as well
6: I’d like we could be used Delphi second IDE for Pascal programmer in windows
7: Tasks made in windows checked up in Linux. This caused mistakes. All optimization
problems (such as BATCH, BUS, RODS) must be made with relative scoring (But a
formula may vary). I suggest to include continuous (non-discrete) problems, on

IOI 2002
Yong-In, Korea

Page 142 of 142

optimization, approximate solving of equations etc. Relative scoring makes such problems
to be correct
9: In fact we need only the student’s programs and input-output files of tasks
10: I felt that this Olympiad was too easy to score a lot of points with a bad solution. One
of my students made a really inefficient N3 solution for FROG, which took more than 2
minutes to run for the last case, and still he got 44 points. I fell that it’s unfair for other
contestants, that such a bad solution earns so many points. Its ok to give points to all
solutions. Just don’t give so many.
31: To improve the security of all systems.

