
Homecoming - Editorial

Bogdan Ciobanu, Andrei-Costin Constantinescu

9 July 2018

1 Minimum Cut / Greedy solutions

1.1 Subtask 1

The problem can be formulated as a max-flow min cut problem, being a particular instance of
Project Selection. The network can be described as follows: the source is linked to the subjects
S0, S1, . . . SN−1 with capacities A0, A1, . . . AN−1. The textbooks T0, T1, . . . , TN−1 are linked to
the sink with capacities B0, B1, . . . BN−1. The ith subject is then linked to its relevant textbooks

with ∞ capacity. The answer is the sum of all possible profits
N−1∑
i=0

Ai minus the cost of the

minimum cut in the network.

1.2 Subtask 2

The further optimize our previous solution we can reduce the number of edges. An easy idea
which comes in handy is to consider a segment tree or a range minimum query-like sparse table
over the subjects. This way we reduce the number of edges from O(N ×K) to O(N log2N).
A neat idea which applies here and yields only O(N) edges is to consider the following easier
problem: compute the result of an operation with no inverse over all subarrays of length K
in O(N) time. WLOG. suppose N is divisible by K, then a possible solution is along the
lines of splitting the array in buckets of length K and computing the result of the operation
in all buckets for every prefix and suffix. We can do something similar here, we can create the
additional nodes TP0 , TP1 , . . . , TPN−1

and TS0 , TS1 , . . . , TSN−1
. We will add the directed edges

TPK∗i → TPK∗i+1
→ . . . → TPK∗(i+1)−1

and TSK∗(i+1)−1
← TPK∗(i+1)−2

← . . . ← TSK∗i with ∞
capacity. Now to link a subject to K consecutive textbooks we only need to add 2 edges.

1.3 Subtask 3

From now we can no longer rely on usual algorithms. We go back to the network from subtask
1 and we derived a different algorithm to compute the max flow. Consider a construction of∑N−1

i=0 Bi cells. Every subject may push the flow only in its interval [
i∑

j=0
Bi,

i+K−1∑
j=0

Bi]. We will

keep buckets of pushed flow. For the first subjects we can push the flow as much we can to
the left of the available interval. Obviously we will encounter difficulties only at the end, when
the cyclic aspect comes in. In this case, we will push the buckets of flow from the prefix to the
right, making sure to respect the interval ends. If we do it natively we get O(K ∗N), because
this O(N) operation only for the last K.

1



1.4 Subtask 4

We can optimize the previous solution, for the last K subjects. When pushing on the prefix,
we notice that every iteration in the algorithm will conceptually merge two intervals, so main-
taining a stack of buckets of flow and recomputing its new border in order to enforce multiple
constraints. This solution takes O(N) amortized time.

2 Dynamic Programming solutions

2.1 Subtasks 1 and 2

We can first consider the solution which uses all subjects. If this is not the optimal one, then
the one we’re looking for has at least one subject which is not taken. We can fix this element
and break the cycle around it, resulting in a solution of O(N3), or O(N2) if we use partial
sums.

2.2 Subtask 3 and 4

We can optimize the previous solution if we fix a textbook out of the first K which is not
taken or consider the solution in which all of them are taken, or even better, we can consider
two cases: the one in which we take T0 and the one in which we’ll skip T0. With proper care,
both of these cases can be treated with (two possibly different) O(N) dynamic programming
solutions. The case in which we’ll skip T0 is treated with a pessimistic argument; the solution
we obtain may not be optimal, but if it’s not, we’ll get the correct answer from the other case,
because it will be optimal to take T0.

2


