
CEOI 2006 - Solutions

CEOI 2006 Scientific committee

Abstract

Contained herein are solutions for the problems featured at the 13th
Central European Olympiad in Informatics which took place in Vrsar,
Croatia in July 2006. Solutions are given as high level descriptions of the
algorithms accompanied by pseudo-code.

1 Antenna

A brute force solution for this problem can be derived from the fact that a circle
with the smallest radius always either passes through some three points or has
a diameter that is a line segment connecting some two points. A brute force
solution iterates through all such circles and for each circle counts the number
of points contained. Only simple analytic geometry is required in this solution
– calculating the center and the radius of a circle given three points comes down
to solving a system of two linear equations. Clearly, this solution works in time
O(N4).

One way to obtain more efficient solutions is by solving a simpler problem
– given a number R find a circle with radius R containing at least K points
(or determine that no such circles exist). If there is an efficient solution for
this problem, we can solve the original problem using binary search – we find
the minimal R (up to the required precision) for which such a circle exists.
In general, a O(f(N)) solution for the simpler problem gives us a O(If(N))
solution for the original problem, where I is the number of iterations required
for the given precision. With the given limits, I has to be around 30.

Suppose we are given the radius R and just one point A. There are many
circles with radius R touching A, however, using a sweeping algorithm we can
calculate the number of points contained in each of them in one pass. Imagine
any circle of radius R passing through the point A. As we rotate the circle
around A (with the radius fixed) two kinds of events can happen; a point may
enter the circle, or a point may exit a circle. If we could sort all of these events
in time and process them in order, we would know the total number of points
contained in the circle at each moment.

Assume that A is the origin and that we start with a circle centered at C =
(R, 0). As we rotate the circle counterclockwise, each position can be represented
by an angle between the segment CA and the x-axis. Given a different point
B, its enter and exit angles can be computed using simple trigonometry. The
solution calculates all the enter and exit angles, sorts the events and scans
them keeping track of the number of points currently inside the circle. One
implementation issue is how to handle the points already inside the circle in the

1

starting position. Solution given here assumes that the circle is initially empty
and makes two full rotations to account for these points.

Algorithm 1 Antenna, given R find a circle of radius R containing K points
1: for all points A do
2: {Find all events}
3: for all points B different from A such that d(A,B) ≤ 2R do
4: α← atan2(yB − yA, xB − xA)
5: β ← acos(d(A,B)/(2R))
6: Events.add(α− β, ”Entering”)
7: Events.add(α + β, ”Exiting”)
8: Events.add(α− β + 2π, ”Entering”)
9: Events.add(α + β + 2π, ”Exiting”)

10: end for
11: Sort the events, lower angle comes first
12: {Sweep}
13: count← 1
14: for all events e do
15: increment or decrement count based on the type of the event e
16: if count ≥ k then
17: We have found our circle
18: end if
19: end for
20: end for
21: There is no such circle

It is easy to see that the complexity of the suggested solution is dominated
by the sorting routine inside the loop. If an efficient sorting scheme is used then
the complete solution works in time O(IN2 log(N)).

Also, due to the geometric nature of the problem, it was possible to achieve
near perfect score with a heuristic solution or with a well optimized solution
with a higher asymptotic complexity.

2 Queue

We start with a long linked list and perform a sequence of operations of the
type move node A in front of node B. For example, the first part of the list
looks like:

Moving node 6 in front of node 3 makes the list look like:

To solve the problem we need to realize that even after many operations,
many nodes will retain their starting predecessor and successor. We will call

2

node X trivial if it is preceded by node X − 1 and succeeded by node X + 1.
Nodes for which this property was violated at any point will be called nontrivial.
In the beginning, all nodes are trivial.

Each move operation makes at most 5 previously trivial nodes nontrivial. In
the previous example, nodes 2, 3, 5, 6 and 7 become nontrivial as a result of the
move operation:

A limit of 50000 operations means that there will be at most 250000 nontriv-
ial nodes in the end (O(N) in any case). This number is small enough that we
can keep track of them - for each nontrivial node we need to know its predecessor
and successor.

Assume that we have an appropriate set data structure in which to hold
the nontrivial nodes. The following algorithm processes the move operations.
When pred or succ is referenced for a node, it implies finding whether the node
is nontrivial and returning as appropriate. When pred or succ is assigned a
value, it implies making the node nontrivial (if it’s still trivial) and inserting or
updating it in the data structure.

Algorithm 2 Queue, process move operations
1: for all operations “move node A in front of node B” do
2: succ[pred[A]]← succ[A]
3: pred[succ[A]]← pred[A]
4: succ[pred[B]]← A
5: pred[A]← pred[B]
6: succ[A]← B
7: pred[B]← A
8: end for

After the above snippet finishes we sort the questions so that we can effi-
ciently find all questions between some two numbers (using binary search). A
single pass through the long (compressed) linked list allows us to answer all
questions.

We still have to choose the data structure in which to hold the nontrivial
nodes. The operations we need are:

1. find node with given label

2. insert node with given label

3. find first node with label larger than given label

A binary search tree with some sort of balancing will suffice. The time
complexity of processing the operations is O(N log N). The complexity of the
list traversal is O(N log N + N log Q + Q).

An additional bit of insight reveals that all nontrivial nodes appear as A−
1, A, A + 1, B − 1 or B in at least one operation. A preprocessing pass over
the operations allows us to find the nontrivial nodes and store them in a sorted
array which, armed with binary search, acts as a replacement for the more
complicated binary search tree structure.

3

Algorithm 3 Queue, answer all questions
1: Sort P-type and L-type questions
2: pos← 1
3: label← label of first node
4: while we haven’t processed all nontrivial nodes do
5: if succ[label] is nontrivial then
6: Answer P-type questions for X = label
7: Answer L-type questions for X = pos
8: pos← pos + 1
9: label← succ[label]

10: else
11: next← first nontrivial node after label
12: {nodes between label and next are in positions between pos and pos +

next− label}
13: Answer P-type questions for X ∈ [label, next− 1]
14: Answer L-type questions for X ∈ [pos, pos + next− label − 1]
15: pos← pos + next− label
16: label← next
17: end if
18: end while

3 Walk

Let P be any path from the destination point D to the starting point S. We
will say that P is a special path if in each step it goes left as far as possible i.e.
each segment in P goes left until it hits an obstacle or reaches the y axis and
then goes either up or down until it can go left again (or until it reaches the
starting point). We will argue that we only need to consider special paths i.e.
there is always a shortest path from D to S that is special. This is somewhat
intuitive, we can go around each building and the point S is strictly to the left
of all buildings so it cannot hurt to consider only special paths. The formal
proof of this claim is not trivial and not needed in order to solve the problem,
but for the sake of completeness, we sketch the argument here.

Take any shortest path P from the point D to the point S. Consider the
first point A after which P is not special, i.e. P can go left after A but instead,
it goes either down or up. Let Q be a left-down path from A, i.e. Q starts
at A and at each step goes left if possible, and down otherwise. Let Q′ be a
left-up path from A defined in a similar fashion. Note that both paths Q and
Q′ are special. Path Q will intersect the y axis at some point B, similarly Q′

will intersect the y axis at some point B′.

• If S is below B then the path Q from A to B (denoted by QAB) followed
by the segment BS is a shortest path from A to S, together with the path
PDA it forms a shortest path from D to S that is special.

• If S is above B′ then the reasoning is similar.

• If S is between B and B′ then P had to intersect Q or Q′ at some point
after A. Assume that P intersects Q at a point A′ after A. Now a path
PDA + QAA′ + PA′S is still a shortest path and is special from D to A′.

4

By repeating this step some number of times we get a special path from
D to S.

Now we can turn our attention to the algorithm. For each building T we
will calculate the shortest distance from S to the upper-right corner TU and the
lower-right corner TD of T . Also, for each corner point A we will say that the T
is the next building from A, denoted T = next(A) if going left from A we first
encounter T . If there is no such building we write next(A) = ε. For a corner
point A, let s(A) be the length of the shortest path from the starting point S
to the point A, and let d(A,B) be the Manhattan distance between the two
points. Since we are only considering special paths the following holds.

s(A) = min(s(T ′
U) + d(T ′

U , A), s(T ′
D) + d(T ′

D, A)) where T ′ = next(A)

This recursive relation gives rise to the following algorithm.

Algorithm 4 Walk, find the shortest distance from S to every corner
1: Sort the rectangles by the larger x coordinate in increasing order
2: for a rectangle T , A = TU , TD do
3: if next(A) = ε then {we have a trivial path from S}
4: s(A)← d(A,S)
5: else
6: R← next(A)
7: s(A)← min(s(RU) + d(A,RU), s(RD) + d(A,RD))
8: end if
9: end for

If we include a dummy rectangle T ′ with D in its upper-right corner, then
the length of the shortest path from S to D is simply s(T ′

U). The actual shortest
path can be easily reconstructed if, for each corner point A, we remember which
of the two values in the recursive relation is lower.

We still need to show how to compute values next(A) for each upper-right
and lower-right corner A. First notice that we only need to consider right side of
every rectangle. For a rectangle T , let T.x be the x coordinate of the right side
and T.y0 and T.y1 the y coordinates of the lower and the upper side. Clearly
TD has coordinates (T.x, T.y1 − 1), while TU has coordinates (T.x, T.y2 + 1).
Suppose we scan all the rectangles with an upwards moving line parallel to the
x axis. We distinguish three kinds of events:

1. The line encounters the bottom of the rectangle T (T.y1), we activate the
rectangle T at the coordinate T.x.

2. The line encounters the top of the rectangle T (T.y2), we deactivate the
rectangle T at the coordinate T.x.

3. The line encounters TD or TU , we can find next(TD) or next(TU) as the
rightmost active rectangle left from T.x.

We will use a variant of the tournament tree data structure to keep track of the
active rectangles and answer queries. This data structure contains an array of
[0, . . . ,M] elements, where M is the largest of all x coordinates. Initially, all
values of the array are set to ε. When a rectangle T is activated, the value T is

5

stored at an index T.x in the tournament tree. The tournament tree structure
usually allows us to find the smallest or largest value on a contiguous part of
the array. Instead of finding a maximal value on the interval our variant finds
a right-most value in the interval that is different from ε. Since rectangles do
not intersect we can have at most one active rectangle at any given point x.

Algorithm 5 Walk, computing the values of next

1: {Find all events}
2: for all rectangles T do
3: Events.add(T.y1, ”Activate rectangle T”)
4: Events.add(T.y2, ”Deactivate rectangle T”)
5: Events.add(T.y1 − 1, ”Query TD”)
6: Events.add(T.y2 + 1, ”Query TU”)
7: end for
8: Sort all events by the y coordinate increasingly
9: {Sweep}

10: for all events e do
11: if e = ”Activate rectangle T” then
12: Tournament.set(T.x, T)
13: else if e = ”Deactivate rectangle T” then
14: Tournament.set(T.x, ε)
15: else if e = ”Query TD” then
16: next(TD)← Tournament.get(0, T.x)
17: else if e = ”Query TU” then
18: next(TU)← Tournament.get(0, T.x)
19: end if
20: end for

Since each tournament tree operation takes O(log M) time, the total time
complexity of the solution is O(N log N + N log M).

4 Connect

We will use the term extended room to denote a set of positions on the board
consisting of one room and the four neighboring corridors. It is not hard to see
that if the game has been played correctly then every extended room on the
board will be in one of the eleven possible configurations (ignoring the blocked
corridors) given in Figure 1.

Conversely, suppose we have placed the dots on the board in such a way
that each extended room is in one of the given configurations. Every figure will
be connected to exactly one other figure – a path must lead out of every figure
(configurations 2–5), and a path may not end except at a figure (configurations
6–11). It is possible that we have constructed a number of loops – closed paths
not connected to any figure. However, if we find a placement of dots satisfying
the above criteria which, additionally, uses the smallest possible number of dots
then we have clearly found a solution.

Now, we can use dynamic programming to solve the problem. We will process
rooms column by column, left to right, and each column top to bottom. For
every room we will try all possible configurations consistent with the dots placed

6

1. 2. 3. 4. 5.
+ +

+ +

+.+
X

+ +

+ +
X.
+ +

+ +
X
+.+

+ +
.X
+ +

6. 7. 8. 9. 10. 11.
+ +
...
+ +

+.+
.
+.+

+.+
..

+ +

+ +
..
+.+

+ +
..
+.+

+.+
..
+ +

Figure 1: Connect, all allowable configurations

so far and the positions of figures and barriers. Clearly, we only need to keep
track of the state of the corridors adjacent to the rooms we have not considered
yet.

+-+-+-+-+-+-+-+-+

| |...... |

+ + + + + + + + +

|...|X X |

+.+.+-+ + + +-+ +

|X|.|..... |

+-+.+.+ +.+ + +-+

|X..|.| |X|

+ + +.+ + + + + +

| |X| |

+ + +-+ + + + + +

| X |

+-+ +.+ + + + + +

|X.... |

+-+-+-+-+-+-+-+-+

Figure 2: Connect, an example state

Each state can be described by the coordinates of the current room and
a bit-array describing the state of the corridors between processed rooms and
those yet to be processed (with the value 1 for a corridor with a dot, and 0 for
an empty or blocked corridor). For example, the state given in Figure 2 can
be described by the triplet (4, 5, 10010010). The algorithm processes the room
by considering all possible configurations consistent with the current state and
the layout of the board. For example, in the current state we can continue with
configurations 7 and 8 resulting in states (5, 5, 10001010) and (5, 5, 10010010)
respectively. For a state S, let B(S) be the smallest number of additional dots
that need to be added in state S in order for every extended room to be in an
allowable configuration. We can calculate this quantity recursively as described
in the following algorithm.

7

Algorithm 6 Connect, given a state S find the best solution from S

1: best←∞
2: for all configurations c such that c is consistent with S and the board do
3: S′ ← new state obtained from S and c
4: a← number of new dots obtained by adding c
5: b← best solution starting from the state S′ {recursive call}
6: if best > a + b then
7: best← a + b
8: end if
9: end for

10: return best

We can implement this general algorithm either by pure dynamic program-
ming or by a recursion with memoization. If the board is of the size (R,C)
then there are N = R/2 rooms in each column and M = C/2 rooms in each
row. The total number of states is NM2N+1, and so the time complexity of
the algorithm is O(NM2N+1). In order to reconstruct the solution we will need
to keep track of the best configuration in each state, which requires additional
O(NM2N+1) space.

5 Link

Clearly, we can assume that links are only added to the home page i.e. every
new link is placed on the home page and points to some other page. The pages
and links form a directed graph with the property that every node has exactly
one outgoing link. If we add a link from the home page to a node x, we will
say that x is marked. If a node can be reached from a marked node in K − 1
steps (which means it can be reached from the home page in K steps), we will
say that it is covered. In this problem we need to find the smallest number of
nodes that need to be marked in order to make every node covered.

Consider one connected component of the graph (ignoring the directions of
the links). Obviously, there has to be one cycle in the component – every node
contains one forward link and by walking along these forward links we have
to eventually revisit a node. Also, this cycle is unique, otherwise there would
have to be a node with two forward links. Therefore each connected component
can be represented as a number of trees (maybe of size one), whose roots are
additionally connected to form a cycle.

Pick one component and assume for simplicity that the home page is not
inside that component. Let C be the set of nodes of the component lying on
the cycle and let T be the set of all other nodes. The algorithm works in two
phases. In the first phase, all nodes from T are covered by marking a minimal
number of nodes. In the second phase all nodes from the cycle C are covered
by marking a minimal number of nodes in C.

We will say that a node x is significant if it is not covered yet and cannot be
covered by marking an uncovered node other than x. Since nodes from T form a
tree, if T is not completely covered there has to be at least one significant node
in T . Therefore, a unique minimal covering of T is achieved by successively
choosing and marking any significant node in T until all of T is covered.

8

This approach can be implemented using depth-first search, in which the
recursive function finds and marks significant nodes and returns the maximal
number of links we can follow downwards before reaching an uncovered node
again. It is easy to see that the suggested implementation works in time O(|T |).
Again, we are assuming for simplicity that the home page is not the connected
component we are considering, that special case can be handled directly.

Algorithm 7 Link, non-cycle nodes, depth-first search
Require: x a node in T , home page not in T
1: dist← 0
2: for all y ∈ T such that the link from y points to x do
3: dist← max(dist, dfs(y))
4: end for
5: if dist = 0 then {node x is significant}
6: mark node x
7: return K − 1
8: else {node x is already covered}
9: return dist− 1

10: end if

Now we turn our attention to the cycle C. While covering T we may have
also covered some nodes in C, now our goal is to cover all the remaining nodes.
In general, it is possible that C contains no significant nodes and the same
approach as for T therefore does not work. However, as soon as we mark a
single node in C, there has to be a significant node (unless we have covered all
of C). More precisely, if we mark x in C and walk K − 1 steps forward, the
next uncovered node has to be significant.

Therefore, if we choose a starting node x, we obtain a candidate minimal
covering by walking forward along the circle and marking uncovered nodes as
we traverse them. If the length of the cycle is L, there are L choices for x
and this algorithm works in time O(L2). We can speed up this algorithm by
noticing that we only need to consider any K successive nodes as a starting
point. With this optimization we obtain an O(KL) algorithm for a cycle and a
O(NK) algorithm for the entire problem.

Algorithm 8 Link, naive algorithm for a cycle
Require: C a sequence of nodes forming a cycle of length L
1: best← L
2: for i = 1, . . . ,K do
3: curr ← 0, j ← i
4: while there are uncovered nodes do
5: find first uncovered node x starting from j
6: curr ← curr + 1 {mark node x}
7: walk forward K − 1 steps, j is the index of the new node
8: end while
9: best← max(best, curr)

10: end for

The solution for the cycle can be further refined by speeding up the traversal

9

of the cycle. In the naive solution above, after we mark a node we simply walk
forward K − 1 steps and then keep walking until we find an uncovered node.
Instead, we can preprocess the cycle and for each node x find what would be
the next significant node if x was marked.

Algorithm 9 Link, cycle preprocessing
Require: C a sequence of nodes forming a cycle of length L
1: j ← k
2: for i = 1, . . . , L do
3: while cj is already covered or it can be covered from ci do
4: j ← j + 1 {addition wraps around}
5: end while
6: Jump[i]← j
7: end for

In each step of the traversal we jump ahead at least K nodes, and therefore
each traversal takes time O(L/K). Since we traverse the cycle K times, we get
a total complexity of O(L) for one cycle of length L. Hence, this solution works
in total time O(N).

6 Meandian

Let us first figure out what salaries can never be determined. Consider the
two lowest paid employees and suppose that we swap their salaries. It is not
hard to see that the answer to any possible question would remain the same.
Therefore, there is no way to differentiate between the lowest and second lowest
paid employee (even if we knew the numbers, we couldn’t tell who is who since
the salaries are different). Similarly, it is impossible to determine salaries for
the two highest paid employees.

Now, let us construct an algorithm that determines the salaries of all other
employees. First, consider the case when N = 5, we will show how to find the
median of the five salaries as well as the index of the corresponding employee.
Suppose a1, a2, . . . , a5 are different indices such that S[a1] < S[a2] < · · · < S[a5]
and let us ask all possible questions.

b1 = Meandian(a1, a2, a3, a4) = (S[a2] + S[a3])/2
b2 = Meandian(a1, a2, a3, a5) = (S[a2] + S[a3])/2
b3 = Meandian(a1, a2, a4, a5) = (S[a2] + S[a4])/2
b4 = Meandian(a1, a3, a4, a5) = (S[a3] + S[a4])/2
b5 = Meandian(a2, a3, a4, a5) = (S[a3] + S[a4])/2

Since all salaries are different, we know that b1 = b2 < b3 < b4 = b5. Therefore,
if we start with any five employees, when we ask all five possible questions and
sort the results, we will obtain the sequence (b)i with this property. The median
salary, S[a3], can now be easily calculated from b1, b3 and b5. The corresponding
index, a3, is simply the index not included in the query that produced b3 as a
result.

10

Algorithm 10 Meandian, solution for the case when N = 5
1: (b)i ← answers to all five possible queries
2: sort the sequence (b)i

3: value← b1 + b5 − b3

4: index←index not included in the query that produced b3

5: Salary[index]← value

To solve the general case we can successively choose any five employees with
unknown salaries and run the previous algorithm to find the salary for one of
them. After N − 4 steps we will have found all possible salaries that can be
determined.

Algorithm 11 Meandian, solution for the general case
1: repeat
2: choose any five employees with unknown salaries
3: run the algorithm for five employees
4: until there are exactly four employees with unknown salaries

In each step we will ask five queries which gives a total of 5(N − 4) queries,
for N = 100 this is well within the given limit of 1000 queries. Note that there
are many other ways to correctly solve this problem within the given limit.

11

