
Task 1.3 Page 1 of 3 Language:English

TASK 1.3. PATH FINDING

The company Trimoncium Soft would like to enter the software market with a product for limited-
memory pocket computers, which is able to provide a series of useful services via Internet. One such
service is to find the shortest path between two crossroads of a given city. Because of technical
difficulties the application should use as few Internet requests as possible.

The crossroads are numbered with consecutive integers from 1 to N (10 ≤ N ≤ 7000) and the location
of a crossroad C is defined by a pair of integer coordinates ХC and YC in an orthogonal coordinate
system (0≤ ХC, YC ≤ 10000). It is possible to have two or more crossroads with the same coordinates.
If there is no street between two such crossroads it is impossible to pass from one to the other. From
each crossroad C it is possible to reach МC other crossroads (0 ≤ МC ≤ 5), called neighbors of C,
through straight one-way streets (each two-way street is presented as two one-way streets). The total
number of streets is not greater than 16000. It is possible that two streets intersect, but the intersection
point is not a crossroad, e.g. they could be on different levels (passing on bridges or going through
tunnels). The length of a street is the distance between the two crossroads connected by that street.

Write a program named PATH, which for a given starting crossroad S and a final crossroad F finds one
of the shortest paths from S to F, using the subprograms of a provided library. The integers N, S and F
are obtained through the three arguments of the subprogram start. This subprogram must be
invoked before any other subprogram. The coordinates ХC, YC and the number MC of the neighbors
of the crossroad C are obtained through the last three arguments of the subprogram getXYM, invoked
with the number C as a first argument. The neighbors of a crossroad C are obtained by calling the
subprogram getAdj with one argument: the number C. The first call of this subprogram returns the
first neighbor of C, the second call returns the second neighbor of C, and so on, the MC-th call returns
the MC-th neighbor. You should never call this subprogram more than MC times.

When your program has found one of the shortest paths from S to F it has to call the subprogram
done once, giving it one argument: the number R of crossroads along the path (including S and F).
Then the program has to call the subprogram report exactly R times, giving it one argument each
time: the number of the consecutive crossroad (in the order in which they appear along the path). Then
the program has to stop. After the invocation of the subprogram done, no other subprograms
except report should be called.

For each test case your program will be graded by the total number K of calls to the getXYM and
getAdj subprograms. This number will be compared with the number J of calls to the same
subprograms by a program of the Jury that solves the same task. If K ≤ J, your program will be
assigned 10 points for this test case. Otherwise, you will get 2+4*(T–K)/(T–J) points, where T is the
total number of crossroads and streets. If the program has found a path which is not any of the shortest
paths, or if it violates the rules for using the provided library, or if it accidentally outputs the correct
answer without assuring its correctness (for example, if it outputs the shortest path without any calls to
the subprograms getXYM and getAdj), then you will be assigned 0 points for the corresponding test
case.

The test cases are composed of real-world data, kindly provided to us by DATECS GIS Center.

Task 1.3 Page 2 of 3 Language:English

EXAMPLE 1 EXAMPLE 2
Call Obtained Call Obtained
start(N,S,F) N=3 S=1 F=3 start(N,S,F) N=4 S=1 F=4
getXYM(1,...) X1=0 Y1=0 M1=1 getXYM(1,...) X1=0 Y1=0 M1=2
getXYM(3,...) X3=1 Y3=1 M3=0 getXYM(4,...) X4=1 Y4=1 M4=1
getAdj(1) 2 getAdj(1) 2
getXYM(2,...) X2=0 Y2=1 M2=1 getAdj(1) 3
getAdj(2) 3 getXYM(2,...) X2=0 Y2=1 M2=1
done(3) getXYM(3,...) X3=9 Y3=0 M3=2
report(1) getAdj(2) 4
report(2) done(3)
report(3) report(1)
 report(2)
 report(4)
For users of FreePascal

Library (module.ppu, module.o)
 procedure start(var N,S,F: LongInt);
 procedure getXYM(I: LongInt; var XI,YI,MI: LongInt);
 function getAdj(I: LongInt): LongInt;
 procedure done(R: LongInt);
 procedure report(V: LongInt);
The program example.pas demonstrates the usage of the library.

Instructions: To compile the file path.pas include in it the operator
uses module;
and execute:
fpc –So –O2 –XS path.pas

For users of GNU C/C++

Library (module.h, module.o)
void start(long* N, long* S, long* F);
void getXYM(long I, long* XI, long* YI, long* MI);
long getAdj(long I);
void done(long R);
void report(long V);
The program example.c demonstrates the usage of the library.

Instructions: To compile the files path.c or path.cpp put
#include "module.h"
in the source code and execute:
gcc –O2 -static path.c module.o -lm -o path.exe
or
gXX –O2 -static path.cpp module.o -lm -o path.exe

 If using RHIDE: Assign to Options->Linker configuration the value module.o.

Task 1.3 Page 3 of 3 Language:English

Experiments

In order to be able to test your program, you will be provided with an experimental version of the
library. This version reads the map of the city from the file path.in. The first line of this file
contains the integers N, S and F. The C-th line of the next N lines contains the information for the C-th
crossroad. The first three numbers on the line are XC, YC and MC. They are followed by MC numbers
(on the same line) – the neighbors of C. The corresponding input files for Example 1 and Example 2
are given below. The results of the experiment – whether your program uses the library correctly and
whether it reports a valid path – will be printed to the file path.out. The experimental version does
not check whether your result is optimal and does not evaluate the number of calls to the getXYM and
getAdj subprograms.

Samples for the path.in input file

Sample 1 Sample 2
3 1 3 4 1 4
0 0 1 2 0 0 2 2 3
0 1 1 3 0 1 1 4
1 1 0 9 0 2 1 4
 1 1 1 3

